共查询到20条相似文献,搜索用时 0 毫秒
1.
通过微波烧结法制备TiC/6061铝基复合材料,研究增强相含量对铝基复合材料显微组织和性能的影响。结果表明:增强相TiC加入后可在一定程度上抑制基体晶粒长大,且随TiC含量增多,基体组织的熔合程度提高。增强相为块状和少量长条状组织,并证实长条相为TiAl金属间化合物。在本研究条件范围内,当TiC含量为30%(质量分数)时,TiC/6061铝基复合材料的硬度可达195 HV0.1,抗压强度462 MPa,屈服强度241 MPa。 相似文献
2.
通过球磨混粉+半固态烧结法成功制备出质量分数为0.5%的石墨烯/7075铝基复合材料,通过扫描电子显微镜、能谱分析仪和室温拉伸力学性能测试等手段,对石墨烯/7075铝基复合材料的显微组织及力学性能进行了研究。结果表明:复合材料中的石墨烯纳米片均匀的分散在7075铝合金基体中,相比于未添加石墨烯的7075铝合金基体,复合材料的密度有所下降,维式硬度和抗拉强度则分别提高了14%和32%,延伸率无明显变化。 相似文献
3.
4.
6.
研究了SiCp/ZA22复合材料的界面,根据界面反应的热力学、能谱分析及高分辨透射电镜的研究结果,发现SiC/α-Al界面上形成了少量Al2MgO4过渡层,而SiC/η-Zn间无任何反应发生。 相似文献
7.
B_4C/6061铝基复合材料疲劳性能及断裂机制 总被引:1,自引:0,他引:1
基于轻质、高强和耐磨等诸多优势,铝基碳化硼复合材料已成为集结构/功能一体化的新型材料。本文采用粉末冶金及轧制方法,制备出厚度3.5 mm、碳化硼质量分数为33%的B4C/Al复合材料板材,并对其疲劳性能和断裂机制进行分析。在1×107循环次数下,铝基碳化硼复合材料板材的疲劳强度达到110 MPa。采用SEM对疲劳断口进行观察,结果表明B4C/Al复合材料疲劳断口可清楚的看到裂纹的萌生、扩展和失稳断裂的典型特征,但存在多种形式的疲劳启裂源。疲劳裂纹扩展路径取决于裂纹尖端塑性区的半径和B4C颗粒的间距大小,当增强颗粒的间距小于塑性区半径时,裂纹主要沿着颗粒的连接界面或断裂的碳化硼颗粒扩展,当增强颗粒的间距大于塑性区半径时,有利于裂纹尖端钝化,减缓裂纹的扩展和方向改变。 相似文献
8.
9.
机敏材料在受外部刺激时可作出相应反应 ,以补偿相应的变化或增强预想的效果。连续 Ti Ni SMA纤维增强剂可以改进材料高温下的屈服应力和断裂韧性 ,同时具有机敏材料的特性 ,属于机敏材料。用 SMA作增强剂强化机敏材料的原理是 ,埋入基体中的 SMA室温加载后由奥氏体向马氏体转变 ,加热后又发生逆转变。逆转变相变过程中 ,复合材料里的 SMA收缩 ,在 SMA内产生拉应力 ,基体内产生压应力。基体中的压应力是提高机敏材料拉伸性能的主要因素。1 复合材料的制备使用四种方法制造 SMA增强复合材料 :真空热压 ,热挤压 ,火花等离子烧结和包… 相似文献
10.
结合液相混合方法、微波烧结技术和冷轧技术制备碳纳米管增强铜基(carbon nanotubes reinforced copper-matrix,CNTs/Cu)复合材料,研究不同烧结温度对于CNTs/Cu复合材料微观形貌、力学性能及物理性能的影响。结果表明,采用液相混合法制备出粒径为200~500 nm、碳纳米管质量分数为0.5%的CNTs/Cu复合粉体,碳纳米管均匀分散在铜颗粒中,并与之形成良好结合界面。CNTs/Cu复合材料的相对密度、硬度、电导率随着烧结温度的升高先增大后减小,在烧结温度为1000℃时达到最佳。制备的碳纳米管质量分数为0.5%的CNTs/Cu复合材料组织均匀、孔隙数量及尺寸较少,相对密度为95.79%,硬度为HV 80.9,电导率为81.8% IACS。经冷轧处理后,CNTs/Cu复合材料拉伸强度达到218 MPa,延伸率保持37.75%。由此可见,微波烧结技术是一种制备高性能CNTs/Cu复合材料的理想方法。 相似文献
11.
12.
13.
利用真空热压法制备25SiCp/Al-30Si复合材料,采用SEM、TEM对SiCp、Sip与基体结合界面及微观组织进行表征,采用XRD分析材料的物相组成。从热力学、界面化学反应及界面润湿原理计算解释SiCp、Sip与基体的结合界面特征。结果表明,Sip/Al界面清晰、平直,表明该界面结合良好,SiC及Si未与基体发生反应。SiC与Al具有如下的匹配关系:[011]SiC//[011]Al(约差1°~2°),(111)SiC//(111)Al,(022)SiC//(022)Al,Al与SiC在{111}、(022)晶面上形成半共格相界。 相似文献
14.
铝基复合材料质轻,性能优异,已成为金属基复合材料中最有代表性的品种。铝基颗粒复合材料作为复合材料的一个分支正在快速发展,目前采用的制备方法有粉末冶金和铸造等。制得的颗粒增强铝基复合材料不仅重量轻、强度高,而且耐磨性能好,特别适于作为抗磨材料制造活塞、轴瓦等零件。本文研究了 SiC 颗粒增强铝基(ZL102)复合材料的真空热压工艺和磨损性能,结果表明,用真空热压 相似文献
15.
采用真空热压法在不同温度下制备了体积分数为12%的WCp/2024Al复合材料,试验中所用WC原始粉末的平均粒径分别为2μm和8μm.利用XRD、SEM、EDS等方法对增强颗粒与基体金属之间的界面反应进行了研究.结果表明,界面反应的主要产物为WAl12,但是当制备温度较高时,界面反应产物中出现少量Al5W,并且WCp(2μm)/2024Al复合材料界面反应的起始温度低于WCp(8μm)/2024Al复合材料.硬度测试结果表明,界面反应发生后,复合材料的硬度提高,最高比例达50%. 相似文献
16.
研究了在扩散焊接SiCW/6061Al复合材料时的试件表面状态,焊接工艺参数,中间层等工艺因素对接头强度的影响,制订出合理的焊接工艺,完成了SiCw/6061Al复合材料扩散连接。 相似文献
17.
采用粉末冶金真空热压烧结法制备了双尺度(纳米、微米)混杂SiC颗粒增强铝基复合材料,并研究其微观组织、密度、硬度及耐磨性。结果表明,微米SiC与基体界面结合较好,分布均匀,没有明显的团聚现象;当纳米SiC质量分数为3%,微米SiC质量分数在0~20%之间时,复合材料的相对密度、硬度、耐磨性均先提高后降低;当微米SiC含量为15%,纳米SiC含量在0~4%之间变化时,复合材料的性能不断提高;微米纳米混杂颗粒增强、单一微米颗粒增强、单一纳米颗粒增强复合材料的最大硬度分别是78.9 HV、70.7 HV、65.8 HV,比基体分别提高56.86%、40.56%、30.81%,耐磨性分别是基体的2.29倍、1.39倍、1.23倍。 相似文献
18.
19.
碳化硅颗粒增强铝基复合材料的研究进展 总被引:10,自引:0,他引:10
综述了碳化硅颗粒增强铝基复合材料的国内外研究现状,从材料的选择、制备技术和性能等方面,分析了该材料发展过程中存在的一些问题以及相应的改进措施,并且指出了该材料今后发展的几个方向。 相似文献