首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Critical heat flux (CHF) experiments have been carried out in a wide range of pressure for an internally heated vertical annulus. The experimental conditions covered a range of pressure from 0.57 to 15.01 MPa, mass fluxes of 0 kg m−2 s−1 and from 200 to 650 kg m−2 s−1, and inlet subcoolings from 85 to 413 kJ kg−1. Most of the CHFs were identified to the dryout of the liquid film in the annular-mist flow. For the mass fluxes of 550 and 650 kg m−2 s−1, the CHFs had a maximum value at a pressure of 2–3 MPa, and the pressure at the maximum CHF values had a trend moving toward the pressure at the peak value of pool boiling CHF as the mass flux decreased. The CHF data under a zero mass flux condition indicate that both the effects of pressure and inlet subcooling on the CHF were smaller, compared with those for the CHF with a net water upflow. The Doerffer correlation using the 1995 CHF look-up table and the Bowring correlation show a good prediction capability for the present CHF data.  相似文献   

2.
An experimental study on critical heat flux (CHF) has been performed for water flow in vertical round tubes under low pressure and low flow (LPLF) conditions to provide a systematic data base and to investigate parametric trends. Totally 513 experimental data have been obtained with Inconel-625 tube test sections in the following conditions: diameter of 6, 8, 10 and 12 mm; heated length of 0.31.77 m; pressure of 106951 kPa; mass flux of 20277 kg m−2 s−1; and inlet subcooling of 50654 kJ kg−1, thermodynamic equilibrium critical quality of 0.3231.251 and CHF of 1081598 kW m−2. Flow regime analysis based on Mishima & Ishii’s flow regime map indicates that most of the CHF occurred due to liquid film dryout in annular-mist and annular flow regimes. Parametric trends are examined from two different points of view: fixed inlet conditions and fixed exit conditions. The parametric trends are generally consistent with previous understandings except for the complex effects of system pressure and tube diameter. Finally, several prediction models are assessed with the measured data; the typical mechanistic liquid film dryout model and empirical correlations of (Shah, M.M., 1987. Heat Fluid Flow 8 (4), 326–335; Baek, W.P., Kim, H.G., Chang, S.H., 1997. KAIST critical heat flux correlation for water flow in vertical round tubes, NUTHOS-5, Paper No. AA5) show good predictions. The measured CHF data are listed in Appendix B for future reference.  相似文献   

3.
Experimental study associated with CHF and dryout point in narrow annuli is conducted with 1.5 mm and 1.0 mm gap, respectively. Distilled water is used as work fluid. The parameters examined were: pressure from 2.0 MPa to 4.0 MPa; mass flux from 26.0 kg/(m2 s) to 69.0 kg/(m2 s); heat flux from 10 kW/m2 to 70 kW/m2; exit equilibrium mass quality from 0.52 to 1.08.It is found that CHF monotonously increases with mass flux in internally heated annuli and bilaterally heated annuli. However, the observed trends are not similar to that in externally heated annuli. The CHF is not affected significantly by mass flux.Critical qualities of dryout point (XDO) decreases with mass flux and increases with inlet qualities. Under the same conditions XDO in outer tube are always larger than that in inner tube. According to experimental data, a criterion for the appearance of dryout point for bilaterally heated has been presented.The comparison with the correlations [КУТАТЕЛАДЗЕ, C.C., 1979. Тедплоэнергетика, No. 6] and experimental data indicates that the existing correlations applied to tube cannot predict XDO in narrow annuli well. Based on experimental data, a new correlation is developed.  相似文献   

4.
Experimental data on steam void fraction and axial temperature distribution in an annular boiling channel for low mass-flux forced and natural circulation flow of water with inlet subcooling have been obtained. The ranges of variables covered are: mass flux = 1.4 × 104−1.0 × 105 kg/hr m2; heat flux = 4.5 × 103−7.5 × 104 kcal/hr m2; and inlet subcooling = 10–70°C. The present and literature data match well with the theoretical void predictions using a four-step method similar to that suggested by Zuber and co-workers.  相似文献   

5.
The effect of axial heat flux distribution (AFD) on the critical heat flux (CHF) was investigated. CHF measurements were obtained with HFC-134a cooled vertical tubes having four non-uniform and one uniform AFD profiles. The HFC-134a test conditions covered a pressure range from 1.6 to 2.4 MPa, a mass-flux range from 2.8 to 4.7 Mg m−2 s−1, and an inlet-quality range from −0.9 to 0. The water-equivalent pressure and mass-flux ranges are 10–14 MPa and 4–6.5 Mg m−2 s−1, respectively.In general, the observed AFD effect on critical power is small at high inlet subcoolings. At low inlet subcoolings, the critical power for the inlet-peak profile is up to 15% higher than that for the outlet-peak profile. A local conditions analysis showed that the AFD has the strongest effect on CHF at high dryout qualities. CHF values for non-uniform AFDs could be 50% lower than those for the uniform AFD. The AFD effect on CHF becomes diminished with decreasing dryout quality.Four different approaches to account for the effect of AFD on CHF were assessed against the experimental values from the current experiment. The boiling-length-average heat-flux approach with the boiling-length starting point at the onset of annular flow (OAF) provided the best prediction of the critical power and the CHF location.  相似文献   

6.
This paper describes an experimental study of subcooled and low quality film boiling for water in a vertical tube covering a mass flux range of 50–500 kg m−2 s−1 and an inlet subcooling range of 5–70°C. Discussion of various observed parametric trends on the film boiling section of the boiling curve is presented. The data are compared with the correlations of Ellion and Hsu.  相似文献   

7.
An experimental investigation was performed on the density wave oscillation (DWO) with two parallel rectangular channels, which have a cross section of 25 mm × 2 mm and a heated length of 1000 mm. Test parameters are 1 MPa to 10 MPa for pressure, 200–800 kg/m2 s for mass velocity, and 10–50 °C for inlet subcooling. The results show that in general the flow becomes more stable while mass velocity, pressure, and inlet subcooling are increased. The period of oscillation becomes shorter if mass velocity is increased or inlet subcooling is decreased. Pressure has little effect on period of the DWO in this research. The dimensionless subcooling number Nsub and phase change number Npch were adopted to compare results from rectangular channels with those from round tubes. The comparison indicates that the data from rectangular channels agree with those from the round tubes. The RELAP5 software was used to simulate the DWO in rectangular channels. The prediction show good consistency with experimental phenomenon. However, different two-phase flow model behaves differently when pressure changes in prediction.  相似文献   

8.
To investigate the effect of variation in acceleration on the critical heat flux (CHF) in subcooled flow boiling, a photographic study was made. The test section was an internally heated vertical annulus with a glass shroud, in which Freon-113 flowed upwardly. The observation was made at a pressure of 3 bar, a mass flux of 920 kg/m2s, an inlet subcooling 45 K and a slightly lower heat flux level than steady CHF. The vertical acceleration was oscillated with amplitude of 0.3ge and a period of 6 s.At low apparent gravitational acceleration, bubbles generated on the heated surface moved longer along the surface without detachment and coalesced with other bubbles to form large vapor slugs. This causes early CHF, the mechanism of which is dry-out of the liquid film existing between the heated surface and vapor slugs.  相似文献   

9.
An experimental study was carried out to determine the effect of rod-bowing on critical heat flux, using an electrically-heated rod cluster. In this experiment, rod-bow was set to occur in the severest subchannel and axially at the middle between the last two spacers, with uniform axial heat flux. The minimum gap between the outer and inner rods was reduced variously to 1.6 mm, 1.0 mm and zero from the nominal value of 2.1 mm. Other experimental conditions were as follows: pressure 7 MPa; mass velocity 640–2600 kg/m2 sec; inlet subcooling 40–560 kJ/kg.Experimental results show only a slight rod-bowing effect, if any, compared with normal spacing, as confirmed by analysis of three-dimensional heat conduction around the rod-bowing area and by the local steam quality deviations calculated by subchannel analyses.  相似文献   

10.
A comparison of critical heat flux (CHF) fuel bundles data with CHF data obtained in simple flow geometries was made. The base for the comparison was primary experimental data obtained in annular, circular, rectangular, triangular, and dumb-bell shaped channels cooled with water and R-134a. The investigated range of flow parameters (pressure, mass flux, and critical quality) in R-134a was chosen to be equivalent to modern nuclear reactor water flow conditions (p=7 and 10 MPa, G=350–5000 kg (m2 s)−1, xcr=−0.1–1). The proper scaling laws were applied to convert the data from water to R-134a equivalent conditions and vise versa. The effects of flow parameters (p, G, xcr) and the effects of geometric parameters (D, L) were evaluated during comparison. The comparison showed that no one simple flow geometry can be used for accurate and reliable bundle CHF prediction in wide range of flow parameters based on local (critical) conditions approach. The comparison also showed that the limiting critical quality phenomenon is unique characteristic for each flow geometry which depends on many factors: flow conditions (pressure and mass flux), geometrical parameters (diameter or surface curvature, gap size, etc.), flow obstructions (spacers, appendages, turbulizers, etc.) and others.  相似文献   

11.
A method was developed based on the conservation lows to predict critical heat flux (CHF) causing liquid film dryout in two-phase annular-mist flow in a uniformly heated narrow tube under BWR conditions. The applicable range of the method is within the pressure of 3–9 MPa, mass flux of 500–2,000 kg/m2·s, heat flux of 0.33–2.0 MW/m2 and boiling length-to-tube diameter ratio of 200–800.

The two-phase annular-mist flow was modeled with the three-fluid streams with liquid film, entrained droplets and gas flow. Governing equations of the method are mass continuity and energy conservation on the three-fluid streams. Constitutive equations on the mass transfer which consist of the entrainment fraction at equilibrium and the mass transfer coefficient were newly proposed in this study.

Confirmation of the present method were performed in comparison with the available film flow measurements and various CHF data from experiments in uniformly heated narrow tubes under high pressure steam- water conditions. In the heat flux range (q“<2MW/m2) practical for a BWR, agreement of the present method with CHF data was obtained as, (Averaged ratio)±(Standard deviation)=0.984±0.077, which was shown to be the same or better agreement than the widely-used CHF correlations.  相似文献   

12.
The objective of this investigation was to present a technique for estimating the conjugation effect on post-dryout heat transfer. To this aim, an experimental study was conducted to measure the conjugation effect on the post-dryout heat transfer using an internally heated eccentric annular test section (outside diameter (O.D.), 13.51 mm; inside diameter (I.D.), 11.54 mm). The experiments were carried out at 7 and 9 MPa with the mass flux varying from 2.0 to 5.0 Mg m−2 s−1 and the inlet vapour quality from 0.01 to 0.20. Five different minimum gap sizes between 0.06 and 1.92 mm were tested. The two-dimensional well temperature distribution on the inside surface of the heated tube was measured using a unique sliding thermocouple technique. A data reduction method was developed to determine the radial heat flux variation on the boiling surface from the temperature measurements. A numerical smoothing procedure was used to minimize the effect of the random temperature measurement error of the sliding thermocouple on the estimated radial heat flux variation. The results show that the conjugation effect can cause the local radial heat flux to deviate by as much as 17% from the average value.  相似文献   

13.
Fluid-to-fluid modeling of critical heat flux (CHF) is to simulate the CHF behaviors for water by employing low cost modeling fluid, and the flow scaling factor is the key to apply the technique to fuel bundles. The CHF experiments in 4×4 rod bundles have been carried out in Freon-12 loop in equivalent nuclear reactor water conditions (P=10.0–16.0 MPa, G=488.0–2100.0 kg/m2 s, Xcr=−0.20–0.30). The models in fluid-to-fluid modeling of CHF is verified by the CHF data for Freon-12 obtained in the experiment and the CHF correlation for water obtained by Nuclear Power Institute of China (NPIC) in the same 4×4 rod bundles. It has been found that the S.Y. Ahmad Compensation Distortion model, the Lu Zhongqi model, the Groeneveld model and Stevens–Kirby model overpredict the bundles CHF values for water. Then an empirical correlation of flow scaling factor is proposed. Comparison of the CHF data in two kinds of test sections for Freon-12, in which the distance of the last grid away the end of heated length is different, shows that the spacer grid, which is located at 20 mm away from the end of the heated length, has evidently influenced on the CHF value in the 4×4 rod bundles for Freon-12. This is different from that for water, and the need for further work is required.  相似文献   

14.
An experimental study of the critical heat flux (CHF) has been performed for a water flow in a non-uniformly heated vertical 3 × 3 rod bundle under low flow and a wide range of pressure conditions. The experiment was especially focused on the parametric trends of the CHF and the applicability of the conventional CHF correlations to a return-to-power conditions of a main steam line break accident whose conditions might be a low mass flux, intermediate pressure, and a high inlet subcooling. The effects of the mass flux and pressure on the CHF are relatively large and complicated in the low pressure conditions. At a high mass flux or a low critical quality, the local heat flux at the CHF location sharply decreases with an increasing local critical quality. However, at a low mass flux or a high critical quality, the local heat flux at the CHF location shows a nearly constant value regardless of the increase of the critical quality. The CHF data at the very low mass flux conditions are correlated well by the churn-to-annular flow transition criterion or the flow reversal phenomena. Several conventional CHF correlations predict the present return-to-power CHF data with reasonable accuracies. However, the prediction capabilities become worse in a very low mass flux of below about 100 kg/(m2 s).  相似文献   

15.
An empirical correlation has been developed for calculating critical heat flux (CHF) for vertical upflow in uniformly heated tubes. The correlation is based on parameter groups derived from a dimensional analysis and has been compared with experimental CHF data for Freon-12 and for water. Except for coolant conditions in which (i) mass fluxes are less than 300 kg s−1 m−2, (ii) dryout qualities are below 10%, or (iii) water pressures are outside the range 3.5 to 12 MPa, the correlation agrees very favourably with the experimental data. The overall mean ratio of calculated to experimental CHF values for 1760 sets of Freon-12 data is 0.992 and the r.m.s. error 3.3%; the corresponding values for 2063 sets of water data are 0.982 and 5.8%. This provides a basis for predicting CHF levels over a wide range of coolant conditions, as required in the analysis of hypothetical loss-of-coolant accidents in water-cooled nuclear reactors.  相似文献   

16.
KAERI has performed an experimental study on the critical heat flux (CHF) under zero flow conditions with a non-uniformly heated 3 × 3 rod bundle. Experimental conditions are in the range of a system pressure from 0.50 to 14.96 MPa and inlet water subcooling enthalpies from 68 to 352 kJ/kg. The test section used in the present experiments consisted of a vertical flow channel, upper and lower plenums, and a non-uniformly heated 3 × 3 rod bundle. The experimental results show that the CHFs in low-pressure conditions are somewhat scattered within a narrow range. As the system pressure increases, however, the CHFs show a good parametric trend. The CHFs occur in the upper region of the heated section, but the locations of the detected CHFs move gradually in a downward direction with the increase of the system pressure. Even though the effects of the inlet water subcooling enthalpies and system pressure of the flooding CHF are relatively smaller than those of the flow boiling CHF, the CHF increases by increasing the inlet water subcooling enthalpies. Several existing correlations for the countercurrent flooding CHF based on Wallis's flooding correlation and Kutateladze's criterion for the onset of flooding are compared with the CHF data obtained in the present experiments to examine the applicability of the correlations.  相似文献   

17.
Critical heat flux (CHF) experiments have been carried out on a 16-rod test section having the typical geometry of boiling water reactor (BWR) fuel elements and in particular a 366 cm length. Heat fluxes were uniform, both axially and radially. The tests were carried out for the CNEN Plutonium Program on CISE's 8 MW IETI-3 facility, at 71 kg/cm2 abs, mass velocities of 12–200 g/cm2 s and inlet sub-cooling of 15–180°C. Each corner rod was instrumented with four separate thermocouples to detect nnd locate the initiation of CHF, while the other rods were instrumented with four-junction thermopiles.  相似文献   

18.
Stable film boiling heat transfer data have been obtained in an 8.9 mm ID tube at pressures from 2 to 9 MPa. These data were obtained at low-quality and subcooled conditions, over a mass flux range of 0.11 to 2.75 Mg m−2 s−1. Excessive film boiling surface temperatures were avoided by using the hot patch technique. Contrary to the high-quality data, the low-quality data showed a decrease in heat transfer coefficient with an increase in quality. The film boiling data were compared with existing film boiling correlations. None of these were found to be satisfactory.  相似文献   

19.
An experimental study on the subcooled boiling phenomena was carried out in the SUBO (SUbcooled BOiling) test facility under steam-water flow condition. The test section is a vertical annulus of which axial length is 4.165 m with a heater rod at the center of a channel. The inner and outer diameters of the test section and the heater rod are 35.5 mm and 9.98 mm, respectively. For the measurement of the local bubble parameters, double sensor optical fiber probes were applied at six elevations along the test channel. Among them, one is installed in the unheated region which is located downstream of the heated section for the measurement of bubble condensation. A total of six test cases was chosen for the parametric study of the heat flux of 370-563 kW/m2, mass flux of 1110-2100 kg/(m2 s) and inlet subcooling of 19-31 K at pressure condition of 0.15-0.2 MPa. From the test, local void fraction, interfacial area concentration, Sauter mean diameter and bubble velocity were measured at 11 radial locations at each elevation. The measured data shows well development and propagation of the bubble parameters along the test channel. The present data is expected to be suitable for a benchmark, validation and model development of the CFD codes or existing safety analysis codes.  相似文献   

20.
One strategy for severe accidents is in-vessel retention (IVR) of corium debris. In order to enhance the capability of IVR in the case of a severe accident involving a light-water reactor, methods to increase the critical heat flux (CHF) should be considered. Approaches for increasing the IVR capability must be simple and installable at low cost. Moreover, cooling techniques for IVR should be applicable to a large heated surface. Therefore, as a suitable cooling technology for required conditions, we proposed cooling approaches using a honeycomb porous plate for the CHF enhancement of a large heated surface in a saturated pool boiling of pure water. In this paper, CHF enhancement by the attachment of a honeycomb-structured porous plate to a heated surface in saturated pool boiling of a TiO2-water nanofluid was investigated experimentally under atmospheric pressure. As a result, the CHF with a honeycomb porous plate increases as the nanoparticle concentration increases. The CHF is enhanced significantly up to 3.2 MW/m2 at maximum upon the attachment of a honeycomb porous plate with 0.1 vol.% nanofluid. To the best of the author's knowledge, under atmospheric pressure, a CHF of 3.2 MW/m2 is the highest value for a relatively large heated surface having a diameter exceeding 30 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号