共查询到14条相似文献,搜索用时 78 毫秒
1.
个性化推荐在网络应用中能有效提高服务质量,在电子商务中的表现更加突出.论述了基于内容过滤的电子商务推荐系统,利用向量空间模型挖掘用户独特的兴趣特征,然后根据产品信息特征的量化值产生推荐序列,并根据用户的反馈信息自适应学习,以提高系统的综合性能.实验结果表明,基于内容过滤的推荐方法其总体性能随时间的推移得到了提高. 相似文献
2.
对推荐系统理论研究与技术开发现状进行了综述,分析与评述了各种推荐技术的原理方法、特点、优势和不足,阐述了推荐系统研究的主要内容,指出了现有推荐系统存在的问题和研究的发展方向。 相似文献
3.
4.
音乐推荐系统是指根据用户的历史浏览数据,从候选库中推荐给用户可能喜欢的音乐的一种新型网络服务。该系统的关键在于需要对整个数据库按照音乐风格进行分类,基于此提出一种新的音乐特征处理方法来完成音乐库分类,以有效实现音乐推荐。该方法首先为候选音乐库构建常规的音乐特征数据集,然后基于分形理论对数据集进行属性约简,获取每一首音乐的推荐特征向量,并且依据特征向量的特点,定义了一种新的距离度量方法。在包含六种风格的音乐数据库的实验中,仿真结果证明了提出的音乐推荐特征和距离度量的有效性,与现有的基于内容的音乐检索研究相比,音乐推荐特征的使用极大地降低了对数据库存储量的需求,对音乐推荐系统的网络开发具有很好的应用价值。 相似文献
5.
6.
一个基于VSM的个性化信息推荐系统 总被引:1,自引:0,他引:1
为了帮助用户从Internet上方便地获得信息,针对Proxy用户环境设计了一个信息推荐系统。先通过Proxy日志挖掘获得用户兴趣,再根据向量空间模型为用户生成兴趣特征,并据此对用户进行信息推荐。系统通过服务评估和反馈来保证信息推荐的质量。 相似文献
7.
为解决用户冷启动问题,提出一种基于随机森林-马尔可夫链相结合的方法。利用随机森林对原始数据进行有监督分类,为特征属性与商品标签建立关联,以此形成第一层推荐列表;利用马尔可夫优良的动态时效性以及最大信息熵原理去除冗余信息,在第一层的列表的基础上进行实时推荐的第二层推荐列表,依次类推形成K层推荐列表。通过MovieLens数据集验证该模型相较于已有的模型具有较高的准确率和召回率。 相似文献
8.
针对新闻推荐系统中用户兴趣模型构建与用户兴趣漂移问题,提出了一种面向新闻推荐的用户兴趣模型构建与更新方法。首先采用向量空间模型与bisecting K-means聚类算法构建了原始用户兴趣模型;然后以艾宾浩斯遗忘曲线为基础构造了遗忘函数,并以此对用户兴趣模型进行时间加权,从而达到对用户兴趣模型更新的目的。实验以基于用户的协同过滤推荐、基于物品的协同过滤推荐为baseline,实验结果表明所构建的原始用户兴趣模型推荐性能更优,在◢F◣值上提升了4%,更新后的模型与原始模型相比◢F◣值提高了1.3%。 相似文献
9.
信息社会中在线百科已成为人们获取知识的重要途径,而在线百科的标签系统作为其重要组成部分,不仅可以帮助人们在浏览某张页面时获取其他相关页面的信息,而且对于海量文本分类,以及提高在线百科检索系统的检索效率都有很大帮助。充分利用在线百科页面间的链接关系,提出了一种基于页面间的同质性原理和向量空间模型的全新针对在线百科的标签推荐算法HVSM(homogeneous principle based vector space model)。该标签推荐算法具有普适性,可在不同在线百科系统间推荐标签。实验结果表明,通过与朴素推荐算法NAM(nave recomm endation model)进行比较,新的推荐算法可以达到更高的准确率。并且通过对实验数据进行分析,得到了若干有益的结论,为今后的研究工作奠定了基础。 相似文献
10.
为研究新闻事件发生地对新闻推荐系统性能的影响,提出了一种顾及事件地理位置的新闻推荐算法。首先,设计了提取新闻事件发生地的相关算法;其次,结合向量空间模型、TF-IDF算法和word2vec工具构建了新闻特征向量;接着,着重讨论了用户兴趣模型的构建问题;最后,运用余弦相似度方法计算用户兴趣模型与候选新闻集之间的相似性,从而完成推荐。实验结果表明,设计的新闻事件发生地抽取算法的性能较好,准确率达到93.6%,以此为基础构建的新闻推荐算法与协同过滤推荐算法相比仅考虑新闻内容的推荐算法在F值上有所提高。 相似文献
11.
12.
数据可视化通常是展示数据价值最有效的方式。针对大规模复杂多维数据,对相关数据子集进行分析并将分析结果自动映射成合适的可视化展现模式,是一项需要大量迭代计算的复杂技术工作。设计并实现了DRVisSys系统,该系统根据属性关联分析技术推荐出合适的可视化展现模式;其对于非平凡属性组合的选择,采用典型关联算法计算出更优的属性集。考虑到各属性权重在实际生活中是有区别的,采用层叠隐马尔可夫算法计算各属性权重,将属性权重作为非平凡属性组的评测标准之一。为使得推荐出的可视化展现模式能更好地满足用户需要,DRVisSys系统能根据用户反馈,更新可视化推荐模型。实验结果表明,DRVisSys能够快速进行数据分析并为用户推荐出合适的可视化展现模式。 相似文献
13.
14.
《Expert systems with applications》2014,41(7):3409-3417
Recently, traffic jams and long queuing problems in tourist hot spots is growing with the increasing number of self-drive tourists. Some recommendation systems have been developed in attempt to relieve these problems. However, all these systems lack information pertaining to real-time traffic as well as the ability of personalization. In this research, we have developed a novel route recommendation system to provide self-drive tourists with real-time personalized route recommendations. This will help to reduce the traffic jams and queuing time in tourist hot spots. It will also help to personalize visiting routes based on the user’s specific preferences. Ultimately, based on the evaluation results given by experienced self-drive tourists, we have shown that the proposed system not only saves total visiting time, but also meets their specific visiting preferences. 相似文献