共查询到18条相似文献,搜索用时 62 毫秒
1.
依据模糊综合评判原理提出一种保持彩色图像细节的模糊矢量中值滤波算法。该算法设置一个可在保持图像细节与去噪能力上进行权衡的参数,并基于中值矢量在模长、辐角等方面的特性,计算矢量处于“中间”状态的隶属度来确定中值矢量。该隶属度为图像的细节保护提供分析基础。与同类矢量滤波算法相比较,该算法在运行速度上有明显优势,具有保护图像细节性好、去噪能力强等优点。 相似文献
2.
在图像的获取或传输过程中可能会受到一些干扰从而产生椒盐噪音,产生的噪声图像失去了一些特征要素。传统的中值滤波方法对椒盐噪音有一定的滤除作用,但当椒盐噪声的密度较大时滤波效果会变差,现有的自适应中值滤波算法对高密度下的椒盐噪声的滤除效果有了很大的提升,但仍难以保留细节。对此本文提出了一种适用于高密度椒盐噪声的自适应中值滤波改进算法,该算法将噪声点和信号点分别进行处理,之后进行模糊逻辑图像边缘检测,对模糊边缘像素点进行二次自适应中值滤波处理。该算法具有结构简单,通用性强,运行速度快等特点。实验结果表明,该算法对高密度的椒盐噪声具有很好的滤波效果。 相似文献
3.
针对图像中椒盐噪声点的准确检测与去除问题,提出一种基于斜率的自适应中值滤波算法。该算法首先用n×n(n为大于或等于3的奇数)的模板作用于待检测图像的每一个像素,若当前像素的灰度值为其邻域内所有像素灰度值的极值,判断此点为准噪声点;再利用像素灰度值序列中两段子序列斜率的差值及模板区域内像素灰度值的均值自适应地判断准噪声点是否为真正的噪声点;最后对被判定为噪声的像素做中值滤波处理。与标准中值滤波方法相比,该方法加强了噪声检测的条件。实验结果表明,该算法具有较好地去除椒盐噪声和保留细节的效果。 相似文献
4.
由于图像噪声会对后续的图像处理结果产生影响,所以在对图像进行其他处理前应先对图像去噪。针对传统中值滤波器在去除均匀分布椒盐噪声时效果并不理想,设计出一种自适应阈值中值滤波器。分别用两种滤波器进行图像去噪实验,通过对比去噪后图像的信噪比、峰值信噪比以及视觉效果发现:较之传统的中值滤波器,新的自适应中值滤波器能更有效地去除椒盐噪声并减少图像失真。 相似文献
5.
6.
非线性滤波是一种有效的噪声抑制技术,已得到了广泛的应用。针对标准中值滤波方法存在的不足,提出自适应中值滤波方法。该方法采用一定的检测标准对图像中的噪声点进行检测,并采用改进的中值滤波方法对噪声点进行滤波。实验结果表明,此方法较标准中值滤波法具有更优良的滤波性能。 相似文献
7.
针对现有中值滤波算法对于高密度噪声图像以及纹理细腻图像的边缘处理能力欠佳的缺陷,提出一种基于动态窗口的自适应中值滤波算法。新算法根据噪声点与周围信息的关联程度将噪声点滤波值进行调整,从而更好地处理图像的细节部份。该算法中的自适应策略加强了滤波算法的去噪性能,使其对于含有任意噪声密度的图像也能很好地进行噪声滤除。通过仿真分析结果表明,新算法对于细节丰富的图像以及高密度噪声的图像滤波效果良好,有效地提高了图像的峰值信噪比,其去噪效果相比其他方法更加优秀。 相似文献
8.
9.
大数据量高清视频流在拍摄、传输等过程中可能受到干扰而产生椒盐噪声.由于其具有数据传输速度快的特点,为了确保它的实时性,进一步提高滤波算法的时间效率和计算效率,对现有的自适应中值滤波进行了改进,提出了一种高速自适应中值滤波算法.滤波过程主要分为噪声点检测和噪声去除两个阶段.其中,在噪声点检测阶段,根据椒盐噪声的极值特性,将图像的像素点分为噪声点和信号点;在噪声去除阶段,信号点保持原值,噪声点根据自适应中值进行赋值.实验结果表明,该算法相较于多种中值滤波方法具有很好的滤波作用,以及很大的速度提升. 相似文献
10.
针对现有中值滤波算法对于高密度噪声图像以及纹理细腻图像的边缘处理能力欠佳的缺陷,提出一种基于动态窗口的自适应中值滤波算法。该算法根据噪声点与周围信息的关联程度调整噪声点滤波值,从而更好地处理图像的细节部分。该算法中的自适应策略加强了滤波算法的去噪性能,使其对于含有任意噪声密度的图像也能很好地进行噪声滤除。通过仿真分析,新算法对于细节丰富的图像以及高密度噪声的图像滤波效果良好,有效地提高了图像的峰值信噪比,去噪效果相比其他方法更加优秀。 相似文献
11.
针对传统中值滤波算法去除高密度椒盐噪声能力的不足,提出了一种新的改进算法.该算法首先采用2级噪声检测方法对图像中的信号点和噪声点进行标识,然后对检测出的噪声点利用改进的中值滤波算法进行处理,而对信号点则保留其灰度值不变.实验结果表明,该算法能在有效去除噪声的同时很好地保留图像细节,相比于传统中值滤波及其它改进中值滤波算法,该算法获得的去噪后的图像具有更好的客观评价指标和主观视觉效果. 相似文献
12.
改进的自适应中值滤波算法 总被引:4,自引:0,他引:4
中值滤波窗口大小影响滤波器性能,3×3滤波窗口可以很好地保持图像细节。提出一种新的自适应中值滤波方法。将3×3窗口中心的极值点作为候选噪声点,若候选噪声点仍然是7×7窗口的极值点,则该点即是噪声点。若以噪声点为中心的3×3滤波窗口的中值不是噪声,则噪声用中值替换。重复以上过程,直到没有噪声点被替换。如果图像中仍然存在大的噪声团块,则噪声用相邻的三个信号点的灰度均值替换。实验结果表明,该方法能够有效去除脉冲噪声,并在抑制噪声的同时很好地保护图像的细节。 相似文献
13.
14.
基于方向中值的图像椒盐噪声检测算法 总被引:1,自引:0,他引:1
为了在有效去除椒盐噪声的同时最大限度地保持图像的细节,针对现有应用于椒盐噪声检测算法的优缺点,提出一种基于方向中值的椒盐噪声两级检测算法。算法通过初级全局噪声检测将图像分为可疑噪声点与信号点,二级检测中算法以可疑噪声点为中心在5×5的检测窗口中设置9个方向检测区,通过可疑噪声点灰度值与检测区像素点灰度中值的比较最终确定噪声点的位置。算法中的可行性漏检在保证图像质量的同时减少了后续处理的像素数,同时,算法具有较低的噪声误检率,保持了图像的细节。仿真实验结果验证了算法的有效性。 相似文献
15.
在分析了自适应算法和中心加权算法的原理和优势后,提出了一种改进的自适应加权中值滤波(IAWMF)算法。采用扩展边缘的方式,使原图像的所有像素点能够用噪声检测因子进行噪声检测,对含有噪声的图像采用自适应窗口(N ×N)的中心加权算法进行滤波,可以有效降低邻域噪声点对滤波图像质量的影响。仿真结果表明:改进算法在高浓度椒盐噪声条件下获得的实验效果峰值信噪比( PSNR)、均值平方误差(MAE)、均值绝对误差(MSE)显著优于其他算法,在降噪和保持细节中取得很好的平衡。 相似文献
16.
为了在滤除椒盐噪声的同时尽可能地保留图像细节,提出了一种基于曲率的双线性插值滤波算法。该算法鉴于双线性插值的低通滤波固有特性,引入像素值的变化以构造类双线性插值模型;为了获得相邻像素的方向趋势,引入曲率信息;以曲率信息为参考,选择最接近原始图像变化规律的方向进行双线性插值滤波。实验结果表明,该方法在滤除噪声的同时有效地保留了图像的细节,且滤波效果优于传统的滤波算法。 相似文献
17.
针对灰度图像中的椒盐噪声,提出了一种基于模糊逻辑推理的方向中值滤波算法.该算法先利用椒盐噪声的特点,将图像像素点分为信号像素点和噪声像素点,然后利用模糊推理在4个方向上推理出最接近理想值的非噪声点代替当前噪声点.同时算法中采用一种简便的方法检测出噪声点所处的滑动窗口中的边和线.仿真结果表明,该算法能在有效抑制噪声的同时较好地保存图像的细节信息. 相似文献
18.
一种改进的自适应中值滤波方法 总被引:5,自引:1,他引:5
提出了一种改进的自适应中值滤波算法,以有效地去除图像中的脉冲噪声,并保留图像细节。在进行噪声点检测时,引入了最小集合距离测度,有效地避免了将高频细节信号误判为噪声。采用最小无污染点集合的中值恢复噪声点,消除了其邻域噪声点的影响。通过与RAMF、NASMF等方法的比较实验表明,新算法噪声检测的正确率高、降噪与保留细节效果好, 尤其对含噪声密度高的图像的处理效果优势更为明显。 相似文献