共查询到19条相似文献,搜索用时 62 毫秒
1.
文本分类是自然语言处理领域中一项基本任务,但目前的文本分类任务往往是领域独立的,且需要丰富的标注数据。该文通过利用不同领域的数据蕴含的相似信息,在一定程度上缓解标签训练数据不足的问题。该文提出了一种多任务学习模型来解决跨领域文本分类任务,通过每个领域的私有编码器和所有领域的共享编码器来分别提取私有特征和共享特征,从而利用不同层面的领域知识来表示文本,并帮助文本分类。另外,该文还利用正交投影将共享特征和领域私有特征进一步异化,从而强化共享特征的纯度,同时使用门控机制将共享特征和私有特征进行重组融合。我们在两个常用的多领域文本分类数据集(Amazon和FDU-MTL)上对所提模型进行了验证。实验结果表明,该模型在Amazon和FDU-MTL数据集上的平均分类准确率分别达到了86.04%和89.2%,较之前多个基线模型有明显提升。 相似文献
2.
针对基于单一领域主动学习的图像分类方法不能利用不同领域图像共同特征导致标记效率低下的问题,提出一种基于跨领域主动学习的图像分类方法。由不同领域图像学习出含共同隐特征的子空间,综合考虑共同特征和领域相关特征,将数据实例引起的模型损失减少量分解到一个共同部分和领域相关部分,从而领域间的共同信息可以编码到模型损失减少的共同部分并用来进行查询。实验结果显示该方法相对于单一模型学习和混合模型学习方法可以减少将近30%的标记工作,并且可以获得更高的精度,表明该方法可以更高效地运用于各种图像分类任务。 相似文献
3.
文本分类技术能够帮助心理咨询对话系统自动判别用户的心理状态,以便在聊天过程中正确对用户进行心理治疗及心理健康干预,在心理学领域中具有良好的应用前景。本文在近年提出的Emotional First Aid Dataset心理咨询语料库上依次构建了烦恼类型、心理疾病、伤害身体倾向三个文本多分类任务,提出了该语料库的数据预处理方案,同时研究了BERT、Ro BERTa等6个深度学习语言模型在这些多分类任务上的性能,并以这些模型作为基学习器构建了集成模型。实验结果表明,XLNet、RoBERTa、ERNIE模型在多个任务上的表现较为突出,同时集成学习能显著地提高分类模型的预测准确率,整体取得了良好的效果。 相似文献
4.
跨领域文本情感分类已成为自然语言处理领域的一个研究热点。针对传统主动学习不能利用领域间的相关信息以及词袋模型不能过滤与情感分类无关的词语,提出了一种基于逐步优化分类模型的跨领域文本情感分类方法。首先选择源领域和目标领域的公共情感词作为特征,在源领域上训练分类模型,再对目标领域进行初始类别标注,选择高置信度的文本作为分类模型的初始种子样本。为了加快目标领域的分类模型的优化速度,在每次迭代时,选取低置信度的文本供专家标注,将标注的结果与高置信度文本共同加入训练集,再根据情感词典、评价词搭配抽取规则以及辅助特征词从训练集中动态抽取特征集。实验结果表明,该方法不仅有效地改善了跨领域情感分类效果,而且在一定程度上降低了人工标注样本的代价。 相似文献
5.
跨领域文本情感分类研究进展 总被引:1,自引:0,他引:1
作为社会媒体文本情感分析的重要研究课题之一,跨领域文本情感分类旨在利用源领域资源或模型迁移地服务于目标领域的文本情感分类任务,其可以有效缓解目标领域中带标签数据不足问题.从3个角度对跨领域文本情感分类方法行了归纳总结:(1)按照目标领域中是否有带标签数据,可分为直推式和归纳式情感迁移方法;(2)按照不同情感适应性策略,可分为实例迁移方法、特征迁移方法、模型迁移方法、基于词典的方法、联合情感主题方法以及图模型方法等;(3)按照可用源领域个数,可分为单源和多源跨领域文本情感分类方法.此外,还介绍了深度迁移学习方法及其在跨领域文本情感分类的最新应用成果.最后,围绕跨领域文本情感分类面临的关键技术问题,对可能的突破方向进行了展望. 相似文献
6.
7.
大量有效样本标注是有监督学习性能的重要保证,但又存在耗时且人力成本高的问题.加之,在实际应用环境,很难在每个应用领域都有足够的标定样本数据支持分类器的训练.而将源领域所获的训练模型直接用于目标领域,又由于目标领域和源领域信息分布差异,会导致跨领域分类器应用准确率降低的问题.针对以上问题,提出一种基于多视角共享特征的领域空间对齐的跨领域情感分类(domain alignment based on multi-viewpoint domain-shared feature for cross-domain sentiment classification, DAMF)算法.该算法首先通过融合多个情感词典,消除通过互信息值所选择的领域共享特征中情感词的极性分歧问题.在此基础上,以领域间无歧义共享特征为桥梁,结合通过语法规则提取的各领域中有相同极性的情感词对和通过关联规则学习的各领域中有强关联关系的特征词对,进行领域间相同极性的专有情感词对和强关联关系的特征词对的提取,构建目标领域和源领域数据的统一特征表示空间,减小了领域间因极性分歧和特征分布不同造成的差异,实现不同领域空间对齐.同时在公共数据集上的跨领域实验表明,基于多视角共享特征的领域空间对齐跨领域倾向性分析算法一定程度上提高了跨领域情感分类的准确率. 相似文献
8.
TrSVM:一种基于领域相似性的迁移学习算法 总被引:1,自引:0,他引:1
迁移学习是对传统监督学习的扩展,试图利用其他相关领域中的现存数据来帮助完成当前领域的学习任务.对于归纳式迁移学习算法,当目标领域只有少量数据时,已有的算法容易受到选择性偏差的影响,不能充分发挥相关领域数据的作用.为解决该问题,提出一种利用领域相似性的新途径:通过定义领域弱相似性的概念,将相似性的约束与目标分类器联系起来,能在训练过程中有效利用相关领域的大量数据,设计出一种基于支持向量机的迁移学习算法TrSVM,并给出求解过程.在大量数据集上的实验结果表明了新算法的有效性. 相似文献
9.
跨领域的文本分类,是指利用有标记领域的知识去帮助另一个概率分布不同的,未标记领域的知识进行分类的问题。从多视图学习的视角提出一个新的跨领域文本分类的方法(MTV算法)。通过在核空间典型相关分析中引入与标记相关的信息,MTV算法可以得到一个判别性能更优的公共子空间。在多个情感类文本数据上的实验表明,MTV算法可以大大提升传统监督式学习算法面对领域迁移时的分类性能,并且在引入判别式的核空间典型相关分析后,进一步优化性能。 相似文献
10.
11.
基于深度模型迁移的细粒度图像分类方法 总被引:1,自引:0,他引:1
针对细粒度图像分类方法中存在模型复杂度较高、难以利用较深模型等问题,提出深度模型迁移(DMT)分类方法。首先,在粗粒度图像数据集上进行深度模型预训练;然后,使用细粒度图像数据集对预训练模型logits层进行不确切监督学习,使其特征分布向新数据集特征分布方向迁移;最后,将迁移模型导出,在对应的测试集上进行测试。实验结果表明,在STANFORD DOGS、CUB-200-2011、OXFORD FLOWER-102细粒度图像数据集上,DMT分类方法的分类准确率分别达到72.23%、73.33%和96.27%,验证了深度模型迁移方法在细粒度图像分类领域的有效性。 相似文献
12.
链接预测属于复杂网络分析的研究分支,它根据网络历史结构信息预测未来节点间会产生链接的可能性,从而挖掘网络的传播和演化方式。通过引入差分化节点的贡献权重并结合经典的节点和共邻节点网络拓扑结构特征,分别应用七类有监督学习-分类模型对社交、生物、交通等不同领域的八个真实复杂网络数据集进行实验,并采用Precision和ROC曲线对实验结果进行分析与评价。实验表明,引入基于差分化节点的贡献特征能够在深入挖掘网络结构信息的基础上比其余特征有更优的预测精确度,同时差异化的分类模型和特征选择对链接预测性能有相异的影响。 相似文献
13.
针对网络流量分类过程中,传统模型在小类别上的分类性能较差和难以实现频繁、及时更新的问题,提出一种基于集成学习的网络流量分类模型(ELTCM)。首先,根据类别分布信息定义了偏向于小类别的特征度量,利用加权对称不确定性和近似马尔可夫毯(AMB)对网络流量特征进行降维,减小类不平衡问题带来的影响;然后,引入早期概念漂移检测增强模型应对流量特征随网络变化而变化的能力,并通过增量学习的方式提高模型更新训练的灵活性。利用真实流量数据集进行实验,仿真结果表明,与基于C4.5决策树的分类模型(DTITC)和基于错误率的概念漂移检测分类模型(ERCDD)相比,ELTCM的平均整体精确率分别提高了1.13%和0.26%,且各小类别的分类性能皆优于对比模型。ELTCM有较好的泛化能力,能在不牺牲整体分类精度的情况下有效提高小类别的分类性能。 相似文献
14.
人脸姿态分类在智能人机交互、虚拟现实、智能控制以及人脸识别等多个领域都有广泛的应用。由于人脸姿态分类过程中存在不同角度间特征重叠率高的问题,导致其分类精度过低。为提高人脸姿态分类的准确率与鲁棒性,提出了基于迁移学习的人脸姿态分类方法。该方法利用卷积神经网络的特征提取和学习能力,对特征进行识别和分类,从而得到单方向人脸姿态的训练参数。利用迁移学习,将卷积神经网络训练好的参数应用于训练两个方向的人脸姿态模型中。使用该方法在CAS-PEAL数据集上进行了实验,最终结果的准确率达到98. 7%,并且与AlexNet、VGGNet和ResNet等网络模型做对比实验,得到了更好的人脸姿态分类效果。实验结果表明,所提出的方法显著提高了人脸姿态分类的准确率与鲁棒性。 相似文献
15.
一种基于融合重构的子空间学习的零样本图像分类方法 总被引:1,自引:0,他引:1
图像分类是计算机视觉中一个重要的研究子领域.传统的图像分类只能对训练集中出现过的类别样本进行分类.然而现实应用中,新的类别不断涌现,因而需要收集大量新类别带标记的数据,并重新训练分类器.与传统的图像分类方法不同,零样本图像分类能够对训练过程中没有见过的类别的样本进行识别,近年来受到了广泛的关注.零样本图像分类通过语义空间建立起已见类别和未见类别之间的关系,实现知识的迁移,进而完成对训练过程中没有见过的类别样本进行分类.现有的零样本图像分类方法主要是根据已见类别的视觉特征和语义特征,学习从视觉空间到语义空间的映射函数,然后利用学习好的映射函数,将未见类别的视觉特征映射到语义空间,最后在语义空间中用最近邻的方法实现对未见类别的分类.但是由于已见类和未见类的类别差异,以及图像的分布不同,从而容易导致域偏移问题.同时直接学习图像视觉空间到语义空间的映射会导致信息损失问题.为解决零样本图像分类知识迁移过程中的信息损失以及域偏移的问题,本文提出了一种图像分类中基于子空间学习和重构的零样本分类方法.该方法在零样本训练学习阶段,充分利用未见类别已知的信息,来减少域偏移,首先将语义空间中的已见类别和未见类别之间的关系迁移到视觉空间中,学习获得未见类别视觉特征原型.然后根据包含已见类别和未见类别在内的所有类别的视觉特征原型所在的视觉空间和语义特征原型所在的语义空间,学习获得一个潜在类别原型特征空间,并在该潜在子空间中对齐视觉特征和语义特征,使得所有类别在潜在子空间中的表示既包含视觉空间下的可分辨性信息,又包含语义空间下的类别关系信息,同时在子空间的学习过程中利用重构约束,减少信息损失,同时也缓解了域偏移问题.最后零样本分类识别阶段,在不同的空间下根据最近邻算法对未见类别样本图像进行分类.本文的主要贡献在于:一是通过对语义空间中类别间关系的迁移,学习获得视觉空间中未见类别的类别原型,使得在训练过程中充分利用未见类别的信息,一定程度上缓解域偏移问题.二是通过学习一个共享的潜在子空间,该子空间既包含了图像视觉空间中丰富的判别性信息,也包含了语义空间中的类别间关系信息,同时在子空间学习过程中,通过重构,缓解知识迁移过程中信息损失的问题.本文在四个公开的零样本分类数据集上进行对比实验,实验结果表明本文提出的零样本分类方法取得了较高的分类平均准确率,证明了本文方法的有效性. 相似文献
16.
深度学习算法的有效性依赖于大量的带有标签的数据,迁移学习的目的是利用已知标签的数据集(源域)来对未知标签的数据集(目标域)进行分类,因此深度迁移学习的研究成为了热门。针对训练数据标签不足的问题,提出了一种基于多尺度特征融合的领域对抗网络(Multi-scale domain adversarial network, MSDAN)模型,该方法利用生成对抗网络以及多尺度特征融合的思想,得到了源域数据和目标域数据在高维特征空间中的特征表示,该特征表示提取到了源域数据和目标域数据的公共几何特征和公共语义特征。将源域数据的特征表示和源域标签输入到分类器中进行分类,最终在目标域数据集的测试上得到了较为先进的效果。 相似文献
17.
目的 目前深度神经网络已成功应用于众多机器学习任务,并展现出惊人的性能提升效果。然而传统的深度网络和机器学习算法都假定训练数据和测试数据服从的是同一分布,而这种假设在实际应用中往往是不成立的。如果训练数据和测试数据的分布差异很大,那么由传统机器学习算法训练出来的分类器的性能将会大大降低。为了解决此类问题,提出了一种基于多层校正的无监督领域自适应方法。方法 首先利用多层校正来调整现有的深度网络,利用加法叠加来完美对齐源域和目标域的数据表示;然后采用多层权值最大均值差异来适应目标域,增加网络的表示能力;最后提取学习获得的域不变特征来进行分类,得到目标图像的识别效果。结果 本文算法在Office-31图像数据集等4个数字数据集上分别进行了测试实验,以对比不同算法在图像识别和分类方面的性能差异,并进行准确度测量。测试结果显示,与同领域算法相比,本文算法在准确率上至少提高了5%,在应对照明变化、复杂背景和图像质量不佳等干扰情况时,亦能获得较好的分类效果,体现出更强的鲁棒性。结论 在领域自适应相关数据集上的实验结果表明,本文方法具备一定的泛化能力,可以实现较高的分类性能,并且优于其他现有的无监督领域自适应方法。 相似文献
18.
为了减少对有标记数据的依赖,充分利用大量无标记数据,提出了一个基于数据增强和相似伪标签的半监督文本分类算法(semi-supervised text classification algorithm with data augmentation and similar pseudo-labels, STAP)。该算法利用EPiDA(easy plug-in data augmentation)框架和自训练对少量有标记数据进行扩充,采用一致性训练和相似伪标签考虑无标记数据及其增强样本之间的关系和高置信度的相似无标记数据之间的关系,在有监督交叉熵损失、无监督一致性损失和无监督配对损失的约束下,提高无标记数据的质量。在四个文本分类数据集上进行实验,与其他经典的文本分类算法相比,STAP算法有明显的改进效果。 相似文献
19.
研究情境特征在文本分类中的作用,提出了一种层级双向LSTM模型用于情感分类问题。该模型首先将句子分词,把词向量作为第一层双向LSTM模型的输入;其次从文档中提取出稠密、连续的向量作为情境特征;然后将第一层模型的输出向量和情境向量共同输入第二层双向LSTM;最后将这种层级双向的LSTM模型的输出向量通过sigmoid函数进行分类。情境向量作用于每个句子,一致的情感得到增强,不一致的情感被弱化,从而提高了分类的精度。在两个公开数据集上的实验表明,整合了情境特征的层级双向LSTM取得较优的精度。除此之外,通过在一个包含两万余条中文评论的公开数据集上对模型进行测试,表明该模型测试正确率相比于普通的LSTM和双向LSTM都有提升,说明情境特征对于提升情感分类的作用比较显著。 相似文献