首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kuo WC  Chou NK  Chou C  Lai CM  Huang HJ  Wang SS  Shyu JJ 《Applied optics》2007,46(13):2520-2527
Polarization-sensitive optical coherence tomography (PS-OCT) combines the advantages of OCT with image contrast enhancement, which is based on its ability to detect phase retardation and the fast-axis angle. Both PS-OCT images and histopathology have demonstrated similar features that allowed differentiation of atherosclerotic structures (i.e., plaques) from normal tissue. Moreover, the picrosirius polarization method was used to confirm PS-OCT assessment of collagen in the fibrous cap of atherosclerotic plaques, and high-frequency (40 MHz) ultrasound images were used to identify calcium in the vessel wall. Our preliminary ex vivo investigation of human aortic specimens indicated that PS-OCT might help to identify atherosclerotic lesions.  相似文献   

2.
Rosa CC  Rogers J  Pedro J  Rosen R  Podoleanu A 《Applied optics》2007,46(10):1795-1808
A versatile time-domain optical coherence tomography system is presented that can generate cross-sectional images by using either transverse priority or depth priority scanning. This is made possible by using a transmissive scanning delay line compatible with balance detection operating at a speed similar to that of the transverse scanner used to scan the beam across the target. In vivo images from the retina are generated and shown using the same system switched to either transverse or depth priority scanning regime, by using the scanning delay line either in slow or fast scanning modes, respectively. A comparative analysis of different scanning regimes depending on image size to fit different areas to be imaged is presented. Safety thresholds due to the different continuous irradiation time per transverse pixel in different scanning regimes are also considered. We present the maximum exposure level for a variety of scanning procedures, employing either A scanning (depth priority) or T scanning (transverse priority) when generating cross-sectional images, en face images, or collecting 3D volumes.  相似文献   

3.
Ford HD  Tatam RP 《Applied optics》2011,50(5):627-640
Fiber imaging bundles have been investigated for use in endoscopic optical coherence tomography (OCT) systems, to obviate the requirement for scanning components within the endoscope probe section. Images have been acquired using several optical configurations, two of which are common path in design. Configurations have been selected as having potential for miniaturization and inclusion in endoscopic-type systems, since the advantages of employing imaging bundles are most clearly seen in this type of system. The various types of bundle available are described, and the properties of the leached bundles used here are discussed in detail, with reference to their effect upon the performance of OCT systems. Images are displayed from measurements made on a range of samples.  相似文献   

4.
Wide-field optical coherence tomography: imaging of biological tissues   总被引:2,自引:0,他引:2  
We describe a two-dimensional optical coherence tomography technique with which we were able to obtain multiple longitudinal slices of a biological sample directly in a single Z scan. The system is based on a femtosecond Cr4+:forsterite laser and an infrared camera for wide-field imaging of the sample with a depth resolution of 5 microm. With this imaging apparatus we were able to investigate human skin and mouse ear samples and to observe the different constitutive tissues.  相似文献   

5.
Polarization-sensitive optical coherence tomography (PSOCT) is applied to determine the depth-resolved polarization state of light backreflected from the eye. The birefringence of the retinal nerve fiber layer (RNFL) was observed and measured from PSOCT images recorded postmortem in a Rhesus monkey. An image-processing algorithm was developed to identify birefringent regions in acquired PSOCT retinal images and automatically determine the thickness of the RNFL. Values of the RNFL thickness determined from histology and PSOCT were compared. PSOCT may provide a new method to determine RNFL thickness and birefringence for glaucoma diagnostics.  相似文献   

6.
Lu Q  Gan X  Gu M  Luo Q 《Applied optics》2004,43(8):1628-1637
We combine a Monte Carlo technique with Mie theory to develop a method for simulating optical coherence tomography (OCT) imaging through homogeneous turbid media. In our model the propagating light is represented by a plane wavelet; its line propagation direction and path length in the turbid medium are determined by the Monte Carlo technique, and the process of scattering by small particles is computed according to Mie theory. Incorporated into the model is the numerical phase function obtained with Mie theory. The effect of phase function on simulation is also illustrated. Based on this improved Monte Carlo technique, OCT imaging is directly simulated and phase information is recorded. Speckles, resolution, and coherence gating are discussed. The simulation results show that axial and transversal resolutions decrease as probing depth increases. Adapting a light source with a low coherence improves the resolution. The selection of an appropriate coherence length involves a trade-off between intensity and resolution.  相似文献   

7.
We have developed a compact, multimodal instrument for simultaneous acquisition of en face quasi-confocal fundus images and adaptive-optics (AO) spectral-domain optical coherence tomography (SDOCT) cross-sectional images. The optical system including all AO and SDOCT components occupies a 60x60 cm breadboard that can be readily transported for clinical applications. The AO component combines a Hartmann-Shack wavefront sensor and a microelectromechanical systems-based deformable mirror to sense and correct ocular aberrations at 15 Hz with a maximum stroke of 4 microm. A broadband superluminescent diode source provides 4 mum depth resolution for SDOCT imaging. In human volunteer testing, we observed up to an 8 dB increase in OCT signal and a corresponding lateral resolution of <10 microm as a result of AO correction.  相似文献   

8.
The two previously reported calculations of the amplitude distribution of speckles in optical coherence tomography, each based on a different mathematical formulation, yield different results. We show that a modification of an initial assumption in one of the formulations leads to equivalent results.  相似文献   

9.
Hauger C  Wörz M  Hellmuth T 《Applied optics》2003,42(19):3896-3902
We describe a new interferometer setup for optical coherence tomography (OCT). The interferometer is based on a fiber arrangement similar to Young's two-pinhole interference experiment with spatial coherent and temporal incoherent light. Depth gating is achieved detection of the interference signal on a linear CCD array. Therefore no reference optical delay scanning is needed. The interference signal, the modulation of the signal, the axial resolution, and the depth range are derived theoretically and compared with experiments. The dynamic range of the setup is compared with OCT sensors in the time domain. To our knowledge, the first images of porcine brain and heart tissue and human skin are presented.  相似文献   

10.
Ultrahigh-resolution full-field optical coherence tomography   总被引:1,自引:0,他引:1  
We have developed a white-light interference microscope for ultrahigh-resolution full-field optical coherence tomography of biological media. The experimental setup is based on a Linnik-type interferometer illuminated by a tungsten halogen lamp. En face tomographic images are calculated by a combination of interferometric images recorded by a high-speed CCD camera. Spatial resolution of 1.8 microm x 0.9 microm (transverse x axial) is achieved owing to the extremely short coherence length of the source, the compensation of dispersion mismatch in the interferometer arms, and the use of relatively high-numerical-aperture microscope objectives. A shot-noise-limited detection sensitivity of 90 dB is obtained in an acquisition time per image of 4 s. Subcellular-level images of plant, animal, and human tissues are presented.  相似文献   

11.
We present the design and procedures for implementing a parallel optical coherence tomography (POCT) imaging system that can be adapted to an endoscopic format. The POCT system consists of a single mode fiber (SMF) array with multiple reduced diameter (15 microm) SMFs in the sample arm with 15 microm center spacing between fibers. The size of the array determines the size of the transverse imaging field. Electronic scanning eliminates the need for mechanically scanning in the lateral direction. Experimental image data obtained with this system show the capability for parallel axial scan acquisition with lateral resolution comparable to mechanically scanned optical coherence tomography systems.  相似文献   

12.
《Optoelectronics, IET》2008,2(5):188-194
Scaffolds play an important role in the generation of functional tissues using tissue-engineering techniques. To generate highly organised tissue, scaffolds must have specific internal and external architectures. Here, optical coherence tomography (OCT) is exploited to characterise the architectures of various scaffolds, in particular scaffolds which have been fabricated to support the formation of uniaxially orientated collagen bundle for use in tendon tissue engineering. In parallel, a polarisation-sensitive OCT (PSOCT) has been built to assess the collagen fibre organisation in human tendon and monitor the growth of engineering tendon constructs online and non-destructively. The impact of mechanical stimuli on the modulation of tendon tissue formation and organisation was also assessed. It is shown that conventional OCT is capable of characterising scaffold architecture and the pore size, porosity or microchannel dimension can be determined quantitatively and qualitatively. PSOCT generated birefringence images of human tendon and demonstrated that low birefringence images, associated with fewer microstructural variations, correlated to the presence of scar tissue or degenerated tissue; whereas the tissue-engineered tendon exhibited lower degree of birefringence.  相似文献   

13.
Vakhtin AB  Peterson KA  Kane DJ 《Applied optics》2007,46(18):3870-3877
Complex-conjugate-resolved Fourier-domain optical coherence tomography, where the quadrature components of the interferogram are obtained by simultaneous acquisition of the first and second harmonics of the phase-modulated interferogram, is applied to multisurface test targets and biological samples. The method provides efficient suppression of the complex-conjugate, dc, and autocorrelation artifacts. A complex-conjugate rejection ratio as high as 70 dB is achieved.  相似文献   

14.
Fujiwara K  Matoba O 《Applied optics》2011,50(34):H165-H170
A common-path swept-source optical coherence tomography (SS-OCT) is a promising scheme for implementing a high-speed and stable OCT system. We investigate the capability of a common-path SS-OCT system to perform the cross-sectional imaging of valuable documents translated at high speed for the check of its security feature. The influence of transport speeds, up to 2000 mm/s, on the depth resolution and the signal intensity is experimentally evaluated using a SS-OCT system equipped with a swept source at a center wavelength of 1335 nm and with a sweep repetition rate of 50 kHz. The degradation of the measured signal is in good agreement with theory.  相似文献   

15.
Jiao S  Yu W  Stoica G  Wang LV 《Applied optics》2003,42(25):5191-5197
We investigate the various contrast mechanisms provided by polarization-sensitive (PS) Mueller-matrix optical coherence tomography (OCT). Our PS multichannel Mueller-matrix OCT is the first, to our knowledge, to offer simultaneously comprehensive polarization-contrast mechanisms, including the amplitude of birefringence, the orientation of birefringence, and the diattenuation in addition to the polarization-independent intensity contrast, all of which can be extracted from the measured Jones or the equivalent Mueller matrix. Theoretical analysis shows that when diattenuation is negligible, the round-trip Jones matrix represents a linear retarder, which is the foundation of conventional PS-OCT, and can be calculated with a single incident polarization state, although the one-way Jones matrix generally represents an elliptical retarder; otherwise, two incident polarization states are needed. The experimental results obtained from rat skin samples, which conform well with the histology, show that Mueller OCT provides complementary structural and functional information on biological samples and reveal that polarization contrast is more sensitive to thermal degeneration of biological tissue than amplitude-based contrast. Thus, Mueller OCT has significant potential for application in the noninvasive assessment of burn depth.  相似文献   

16.
Makita S  Yasuno Y  Endo T  Itoh M  Yatagai T 《Applied optics》2006,45(6):1142-1147
Jones matrix imaging of biological samples by a polarization-sensitive Fourier-domain optical coherence tomography has been demonstrated using a two-dimensional CCD camera to obtain two spectra corresponding to the orthogonal polarization components simultaneously. The measurement results of a quarter-wave plate are compared between the two incident polarization sets, H-V linear and R-L circular polarization. Jones matrix imaging of the bovine tendon is demonstrated. Measured Jones matrix images are converted to equivalent Müller matrix images. Local polarization properties are obtained by longitudinal differentiation of Jones matrix components. The layered structure of the bovine tendon and birefringence are revealed.  相似文献   

17.
提出了一种高速光学相干层析(OCT)成像技术方案。利用柱面镜的成像特性将传统OCT的点聚焦成像模式改变为线聚焦成像模式,从而降低二维OCT图像的扫描维数,达到提高成像速度的目的。利用ZEMAX光学软件对系统进行光线追迹获得光束经过柱面镜后的聚焦情况。随后采用635nm的激光光源和柱面镜构建了实验系统,实验结果很好地验证了光线追迹仿真结果。  相似文献   

18.
We report an integrated ultrasound (US) and optical coherence tomography (OCT) probe and system for intravascular imaging. The dual-function probe is based on a 50 MHz focused ring US transducer, with a centric hole for mounting OCT probe. The coaxial US and light beams are steered by a 45° mirror to enable coregistered US∕OCT imaging simultaneously. Lateral resolution of US is improved due to focused ultrasonic beam. Mirror effects on US were investigated and invitro imaging of a rabbit aorta has been carried out. The combined US-OCT system demonstrated high resolution in visualizing superficial arterial structures while retaining deep penetration of ultrasonic imaging.  相似文献   

19.
Traditional analysis of spectroscopic optical coherence tomography (SOCT) signals is limited by an uncertainty relationship between time (depth) and frequency (wavelength). The use of a bilinear time-frequency distribution for analysis, such as those that compose Cohen's class of functions, may provide a way to avoid this limitation. Here we present the relationship between traditional SOCT analysis and the relevant Cohen class functions: the Wigner and Choi-Williams distributions. While cross terms that arise in these bilinear time-frequency distributions have been viewed as an artifact, here we identify these terms with temporal coherence, which contains significant information about the signal through phase relationships. The utility of time-frequency distributions is illustrated through analysis of calculated signals.  相似文献   

20.
Piao D  Zhu Q 《Applied optics》2005,44(3):348-357
We introduce a new method, to our knowledge, for direct detection of flow signal intensity by stationary target rejection. In our system, two delay lines are constructed with identical scanning speed and ranging depth. One delay line is used for depth ranging as well as phase modulation, and the other one acts as a full-range retroreflector (FRRR). The signal from this FRRR carries the overall features of local phase modulation, and it is used as the local oscillator for coherent demodulation. With this setup, stationary targets can be rejected at a 4-kHz high-pass cutoff frequency of the filter that follows the demodulator, compared with 20 kHz for conventional fixed-frequency demodulation. This technique features angle insensitivity and provides flow direction as well by implementing standard in-phase and quadrature detection. Besides the direct directional detection of flow signal intensity, flow speed information can be acquired with postprocessing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号