首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectroscopic and imaging cathodoluminescence (CL) microscopy has been used to study high T c YBCO and BSCCO superconducting thin films and pellets in the scanning electron microscope. The effects of beam parameters, such as voltage, current, and diameter, have been investigated with a view to optimizing the CL signal intensity whilst preventing sample damage. Limiting the CL signal generation volume to within the thin film is important in eliminating any substrate contribution. Areas of strong luminescence have been observed in YBCO and BSCCO pellets as well as BSCCO thin films. At low beam energies, there is some correlation between the CL and secondary electron images. The CL spectra of the strongly luminescent spots differed from those of the poorly luminescencing superconducting phases. CL was able to identify a copper-rich impurity phase in the BSCCO material, and a barium cuprate phase in the YBCO material. It is proposed that the quality of a thin film, with respect to impurities, can be monitored using CL.  相似文献   

2.
B. Todorovi&#x    T. Joki&#x    Z. Rako   evi&#x    Z. Markovi&#x    B. Gakovi&#x    T. Nenadovi&#x 《Thin solid films》1997,300(1-2):272-277
This work reports on the effect of post-deposition rapid thermal annealing on the structural and electrical properties of deposited TiB2 thin films. The TiB2 thin films, thicknesses from 9 to 450 nm, were deposited by e-beam evaporation on high resistivity and thermally oxidized silicon wafers. The resistivity of as-deposited films varied from 1820 μΩ cm for the thinnest film to 267 μΩ cm for thicknesses greater than 100 nm. In the thickness range from 100 to 450 nm, the resistivity of TiB2 films has a constant value of 267 μΩ cm.

A rapid thermal annealing (RTA) technique has been used to reduce the resistivity of deposited films. During vacuum annealing at 7 × 10−3 Pa, the film resistivity decreases from 267 μΩ cm at 200 °C to 16 μΩ cm at 1200 °C. Heating cycles during RTA were a sequence of 10 s. According to scanning tunneling microscopy analysis, the decrease in resistivity may be attributed to a grain growth through polycrystalline recrystallization, as well as to an increase in film density.

The grain size and mean surface roughness of annealed films increase with annealing temperature. At the same time, the conductivity of the annealed samples increases linearly with grain size. The obtained results show that RTA technique has a great potential for low resistivity TiB2 formation.  相似文献   


3.
Characteristics of piezoelectric actuator on Si membrane were investigated. Si membranes were fabricated as a function of size using bulk micromachining method. Bottom electrode Ag–Pd and piezoelectric thick films were fabricated using screen printing method, respectively. Piezoelectric thick films were sintered by rapid thermal annealing (RTA). Top electrodes Pt were deposited by DC sputtering system. We analyzed micro structure by scanning electron microscope (SEM) and investigated dynamic properties by MTI2000. Therefore, piezoelectric thick film on Si membrane had Pr of 15.7 μC cm−2. The maximum displacement of micro actuator had 0.05 μm. We find the combination of thick film printing and MEMS process to form a Si membrane micro actuator.  相似文献   

4.
Zinc oxide (ZnO) films were prepared by ultrasonic spray pyrolysis on indium (In) films deposited by evaporation and subsequently subjected to rapid thermal annealing (RTA) in air or vacuum. The crystallographic properties and surface morphology of the films were characterized before and after RTA by X-ray diffraction and scanning electron microscopy, respectively. The variation in resistivity of the films with RTA temperature and time was measured by the four-point probe method. Auger electron spectroscopy (AES) was carried out to determine the distribution of indium atoms in the ZnO films. The resistivity of the ZnO on In (ZnO/In) films decreased to 2×10−3 Ω cm by diffusion of the In. Indium diffusion into the ZnO films roughened the film surface. The results of depth profiling by AES showed a hump of In atoms around ZnO/In interface after RTA at 800 °C, which disappeared on RTA at 1000 °C. The effects of temperature, time and atmosphere during RTA on the structural and electrical properties of the ZnO/In films are discussed.  相似文献   

5.
SrS thin films were deposited by electron beam evaporation on heated silica substrates. The optical properties of the layers – complex refractive index and optical band gap –were derived from optical transmission spectra, measured by means of UV-VIS-NIR spectrophotometry. The influence of post-deposition annealing by rapid thermal processing (RTP) was studied. X-ray powder diffraction (XRD) was used to study the film crystal structure and preferential orientation.  相似文献   

6.
In this study, nanocrystalline diamond (NCD) films were deposited on various metal/silicon substrates using a microwave plasma chemical vapor deposition system. Metal layers used are chromium, titanium, aluminum and were used as the electron source for field emitters. These NCD/metal/silicon structures were subsequently annealed at 500 °C in a rapid thermal annealing (RTA) furnace. After RTA treatment, the surface of NCD films becomes flat and the grain boundaries can no longer be clearly seen. The intensity of graphitic peak is substantially decreased and the sp3 content of NCD films is increased. The chemical composition of NCD film remains unchanged after RTA treatment, but the sp3/sp2 ratio in C 1s has been increased. It is found that the field-emission characteristics of diamond emitter not only can be effectively controlled by the metal used in the metal/NCD/Si structure, but also can be further enhanced by the improved microstructure of the NCD film obtained after RTA treatment.  相似文献   

7.
The effects of La content and rapid thermal annealing (RTA) on the capacitance (C–V) and leakage current (J–E) properties of the PLT films were investigated. The films were deposited on Pt/Ti/SiO2/Si substrates at 480 °C by electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR PECVD). The La doped films showed slim P–E hysteresis curves and almost no frequency dependency of permittivity. As the La content increased beyond 11%, Pb was excessively incorporated into the PLT film, resulting in non-stoichiometric compositions with (Pb+La)/Ti>1, degraded crystallinity and decreased capacitance. After RTA at 700 °C, C–V curves became symmetric and leakage current characteristics were improved, but the crystallinity and the ferroelectricity of the films were not so much improved although the film became stoichiometric. The leakage current of the films was controlled by Schottky conduction except for the low electric field region where the trap current of mobile charges or hopping conduction appeared to be dominant. In order to explain the RTA dependence of the C–V shift and the polarity dependence of the J–E characteristics of the PLT films, a physical model was suggested, based on the surface states and Pb vacancies, which affects the width of the space charge region and the height of the Schottky barrier. © 1998 Kluwer Academic Publishers  相似文献   

8.
This paper reports the rapid thermal annealing (RTA) of Ti-rich TiNi thin films, synthesized by the co-sputtering of TiNi and Ti targets. Long-range order of aperiodic alloy could be achieved in a few seconds with the optimum temperature of 773 K. Longer annealing (773 K/240 s), transformed the film to a poorly ordered vitreous phase, suggesting a novel method for solid state amorphization. Reitveld refinement analyses showed significant differences in structural parameters of the films crystallized by rapid and conventional thermal annealing. Dependence of the elastic modulus on the valence electron density (VED) of the crystallized films was studied. It is suggested that RTA provides a new approach to fabricate patterned shape memory thin films.  相似文献   

9.
TheT c changes related to the microstructure as a function of annealing temperature for the BiSrCaCuO (BSCCO) film implanted with 170 keV P+ at two different doses were studied. The BSCCO films were prepared by d.c. sputtering on MgO substrates. For the film implanted at a dose of 5×1015 cm–2 post-implantation annealing at 600–800°C enabled theT cs of the film to be completely recovered. For the film implanted at a dose of 1.0×1017cm–2 theT cs were only partly recovered after 600°C annealing. On further annealing at 700°C the superconductivity of the film disappeared. TEM examination showed that significant amount of CaP, Ca3P2, and some unknown phases were formed. It is considered that the significant amounts of these phases formed during post-implantation annealing renders the recovery of the superconductivity of the P+-implanted BSCCO film difficult.  相似文献   

10.
Ferroelectric/superconductor heterostructures   总被引:2,自引:0,他引:2  
This review covers the fabrication and characterization of ferroelectric/superconductor heterostructures such as Pb(ZrxTi1−x)O3/YBa2Cu3O7−δ (YBCO), BaTiO3/YBCO and BaxSr1−xTiO3/YBCO etc. on various single crystal substrates. Pulsed laser deposition, laser molecular beam epitaxy, and magnetron-sputtering methods are compared. This report shows that pulsed laser deposition equipped with in situ reflection high-energy electron diffraction is a good method to control the growth mode of YBCO thin films. Furthermore, laser molecular beam epitaxy is a superb method for research of complex oxide films and their superlattices. Atomic force microscopy and transmission electron microscopy showed the ferroelectric films grown on the rough surface of the YBCO films produced high-density planar defects in the film and is detrimental to the ferroelectric/dielectric properties of the heterostructures. Therefore, for device usage, it is more advantageous to use SrRuO3 than YBCO as the bottom electrode material. For growing atomically smooth surface films step-flow mode is highly recommended. Prospects of microwave device application of the ferroelectric/superconductor heterostructures are discussed, and proposed the BSTO films as the best candidate for passive microwave components.  相似文献   

11.
Complex approach to the investigation of microstrip resonators and filters based on High-Temperature Superconductor (HTS) films is described, which includes modeling of the electrodynamic parameters of HTS films, designing of microstrip resonators and filters, their manufacturing, and testing. Test samples were prepared using YBCO films on 0.5-mm-thick lanthanum aluminate substrates. The resonators and filter structures were patterned using ion-beam photolithography. Experimental data were used to determine the parameters of the model of surface impedance of the YBCO film and the film thickness and permittivity. Adequacy of the model and reliability of the model parameters, which were used for the synthesis and design of a 4th-order filter, were confirmed by coincidence of the experimental and calculated characteristics.  相似文献   

12.
Superconducting YBCO thin films have been fabricated by sequential electron beam evaporation of metallic constituents for yttrium and copper while barium is replaced with BaF2. The conversion of BaF2 BaO has been attained through wet oxygen annealing. Correlations of stoichiometry with microstructural, as well as superconducting, properties of the films have been examined. Results are given for YBa2Cu3O7– thin films on SrTiO3 (1 0 0) and YSZ (1 0 0) single crystal substrates. The usefulness of the BaF2 preparation route for the fabrication of mixed phase (Y123 + Y124) and pure Y124 is also demonstrated. Microstructural properties of Y123 thin films indicate different growth processes for the two substrates.  相似文献   

13.
Antimony-doped Tin oxide (ATO) films have been prepared by inkjet-printing method using ATO nanoparticle inks. The electrical and optical properties of the ATO films were investigated in order to understand the effects of rapid thermal annealing (RTA) temperatures. The decrease in the sheet resistance and resistivity of the inkjet-printed ATO films was observed as the annealing temperature increased. The film annealed at 700 degrees C showed the sheet resistance of 1.7 x 10(3) Omega/sq with the film thickness of 350 nm. The optical transmittance of the films remained constant regardless of their annealing temperatures. In order to further reduce the sheet resistance of the films as well as the annealing temperature, Ag-grid was printed in between two layers of inkjet-printed ATO. With 1.5 mm Ag line spacing, the Ag-grid embedded ATO film showed the sheet resistance of 25.6 Omega/sq after RTA at 300 degrees C.  相似文献   

14.
The microstructure of Bi–Sr–Ca–Cu–oxide (BSCCO) thick films on alumina substrates has been characterized using a combination of X-ray diffractometry, scanning electron microscopy, transmission electron microscopy of sections across the film/substrate interface and energy-dispersive X-ray spectrometry. A reaction layer formed between the BSCCO films and the alumina substrates. This chemical interaction is largely responsible for off-stoichiometry of the films and is more significant after partial melting of the films. A new phase with f c c structure, lattice parameter a = 2.45 nm and approximate composition Al3Sr2CaBi2CuO x has been identified as reaction product between BSCCO and Al2O3. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

15.
This work is aimed at in-line thickness and composition analysis of Co silicides by spectroscopic ellipsometry (SE). The silicides were formed by a two-step rapid thermal annealing (RTA) in nitrogen at different temperatures from initial Co layers deposited on Si (100) substrates and capped by a protective layer of TiN. The optical constants of Co, CoSi and CoSi2 films were calculated in the wavelength range of 240–800 nm, describing the optical dispersions by harmonic oscillator models. These models were applied for in-line thickness and composition control of the main steps of Co SALICIDE process. The effects of the first RTA temperature and initial Co thickness on formation of silicide phases and their thickness were evaluated. For phase identification, additional methods (sheet resistance, Auger electron spectroscopy and X-ray diffraction) were used. Finally, the suitability of SE for layer thickness uniformity evaluation was demonstrated for the main steps of Co SALICIDE process.  相似文献   

16.
Molecular beam epitaxy (MBE) has been used to grow high-temperature superconducting Bi-Sr-Ca-Cu-O films with adequate control over growth of number of unit layers. Oxide sources of Sr and Ca used for electron beam evaporation have been found to be useful for epitaxial growth of films. Deposited films show superconducting properties comparable to films deposited by using pure metals with a complicatedin situ oxidation technique. Optimum deposition and annealing conditions have been obtained to growc-axis-oriented 2212 phase BSCCO film.In situ reflection high-energy electron diffraction (RHEED) study of the films has revealed the growth of epitaxial films with atomically smooth surfaces.  相似文献   

17.
Improving the thickness of superconducting layer in coated conductors is an effective way to enhance its critical current. In this work, tri-layer YBCO/YBCO/YDyBCO films were successfully deposited on buffered Hastelloy substrate using the multi-coating lowfluorine metal-organic decomposition (LF-MOD) method and the thickness of the films can be up to 2.4 μ m. The effects of high-temperature annealing time on microstructures and superconducting properties of the films were systematically studied. Energy dispersive X-ray spectroscopy (EDS) results reveal that there remains a large amount of F element in the upper layer of the film when the annealing time is too short. With increasing the annealing time, the fluoride-containing precursor converts to YBCO grains completely. But the coarsening of grains appeared, and the critical current density (J c) of the film dropped slightly when the annealing time is too long. The cross-sectional scanning electron microscope (SEM) image and EDS plane analysis were applied to investigate the microstructure and element distribution of the final triple-layer YBCO films, respectively. The critical current of the final YBCO superconducting film could reach 316 A (77 k, self-field) for 1.2-cm-wide tapes with the optimal annealing conditions.  相似文献   

18.
Internal friction in copper thin films 0.2–1.5 μm thick on silicon substrates has been measured between 180 and 340 K as a function of strain amplitude. Analysis of the amplitude-dependent internal friction in the copper films shows the relation between the plastic strain of the order of 10−9 and the effective stress on dislocation motion. The stress–strain curves thus obtained for the copper films tend to shift to a higher stress with decreasing film thickness and also with decreasing temperature, both indicating a suppression of microplastic flow. It is concluded that the microflow stress at a constant level of the plastic strain varies inversely with the film thickness at all temperatures examined. The film thickness effect in the microplastic range can be explained on the basis of a dislocation-bowing model.  相似文献   

19.
用直流溅射法在聚酰亚胺(PI)基底上制备了300nm厚的Al膜,并进行快速退火(RTA)处理。用X射线衍射、扫描电子显微镜和曲率法对Al薄膜的微结构及应力随退火温度和时间的变化进行了研究。结果表明,采用快速退火可以使其压应力松弛,甚至转变成张应力。  相似文献   

20.
The effect of temperature in rapid thermal annealing (RTA) process on the physical and electrical properties of bismuth ferrite ceramic thin films on HfLaO/p-Si substrates has been investigated. In metal-ferroelectric-insulator-silicon (MFIS) capacitors, the high-k HfLaO dielectric layer was prepared as the insulator layer. On HfLaO/Si substrates the bismuth ferrite thin film was fabricated via sputtering process with a BiFeO3 (BFO) target at room temperature followed by RTA. The RTA temperature ranged from 500 to 700 °C. It is found that the root mean square roughness of ceramic films increases for high-temperature process. The maximum ferroelectric memory window is 1.6 V obtained from a sweep voltage of ± 4 V at the lowest RTA temperature of 500 °C. This good ferroelectric memory performance can be attributed to the low leakage current as a result of smooth surface of nanocrystalline ferroelectric BFO and Bi2Fe4O9 thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号