首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
金属─陶瓷梯度材料的热弹塑性分析   总被引:7,自引:2,他引:5       下载免费PDF全文
本文对金属-陶瓷梯度材料的稳态热弹塑性行为进行了研究.文中首先采用平均场和自洽弹塑性微观力学方法预测了金属-陶瓷梯度材料的非弹性性能,然后用非线性有限元法计算了材料制备过程中的热弹塑性应力.结果表明,梯度材料的热弹塑性行为对梯度材料的热应力缓和性能有显著影响.  相似文献   

2.
金属─陶瓷梯度材料的热弹塑性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
本文对金属-陶瓷梯度材料的稳态热弹塑性行为进行了研究.文中首先采用平均场和自洽弹塑性微观力学方法预测了金属-陶瓷梯度材料的非弹性性能,然后用非线性有限元法计算了材料制备过程中的热弹塑性应力.结果表明,梯度材料的热弹塑性行为对梯度材料的热应力缓和性能有显著影响.   相似文献   

3.
Mullite/Mo functionally graded material (FGM) was developed with a powder metallurgy process. Microscopic observations revealed that the microstructure of the mullite/Mo FGM had a gradual stepwise variation. The thermomechanical properties of the mullite/Mo system had graded distributions that depend on the composition variation across the thickness. Thermal shock tests were done on the FGMs and on monolithic mullite. The FGM specimens had better thermal shock resistance than did monolithic mullite. The thermal shock resistance of FGMs was influenced by the sintering-induced residual thermal stress. Cracks caused by thermal shock were observed, and the mechanism of crack formation was discussed.  相似文献   

4.
Simultaneous combustion synthesis reaction and compaction of Ti, C, and Ni powders under a hydrostatic pressure was carried out to fabricate dense TiC–Ni functionally graded materials (FGMs) in a single processing operation. Scanning-electron microscope (SEM) and microprobe analysis (EPMA) was employed to investigate the microstructure and composition distribution. Experimental results demonstrate that Ni and Ti composition varies continuously and gradually along the thickness of the reacted sample, remarkably different from stepwise type prior to combustion synthesis. The constituents are continuous in microstructure everywhere and no distinct interaction occurs in TiC–Ni FGM. Moreover, the thermal physical and mechanical properties were measured as a function of composition. It was found that the properties of the FGMs were dependent on Ni content. The residual thermal stress of TiC–Ni FGM and dual-laminate non-FGM cooled to room temperature after combustion synthesis has been analyzed by finite element method. TiC–Ni FGM shows distortion and thermal stress relaxation, which is in striking contrast to the layered TiC–Ni non-FGM.  相似文献   

5.
A new computational method based on the equivalent domain integral (EDI) is developed for mode I fracture analysis of orthotropic functionally graded materials (FGMs) subjected to thermal stresses. By using the constitutive relations of plane orthotropic thermoelasticity, generalized definition of the J-integral is converted to an equivalent domain integral to calculate the thermal stress intensity factor. In the formulation of the EDI approach, all the required thermomechanical properties are assumed to have continuous spatial variations through the functionally graded medium. Developed methodology is integrated into a fracture mechanics research finite element code FRAC2D using graded finite elements that possess cubic interpolation. Steady-state and transient temperature distribution profiles in orthotropic FGMs are computed using the finite elements based heat transfer analysis software HEAT2D. EDI method is validated and domain independence is demonstrated by comparing the numerical results obtained using EDI to those calculated by an enriched finite element method and to those available in the literature. Single and periodic edge crack problems in orthotropic FGMs are examined in order to study the influences of principal thermal expansion coefficient and thermal conductivity components, relative crack length and crack periodicity on the thermal stress intensity factors. Numerical results show that among the three principal thermal expansion coefficient components, the in-plane component perpendicular to the crack axis has the most significant influence on the mode I stress intensity factor. Gradation profile of the thermal expansion coefficient parallel to the crack axis is shown to have no effect on the outcome of the fracture analysis.  相似文献   

6.
The thermal fracture problem of an interface crack between a graded orthotropic coating and the homogeneous substrate is investigated by two different approaches. For the case that most of the material properties in the graded orthotropic coating are assumed to vary as an exponential function, the integral transform and singular integral equation technique is used to obtain some analytical results. In order to analyze the case with more complex material distribution, an interaction integral is presented to evaluate the thermal stress intensity factors of cracked functionally graded materials (FGMs), and then the element-free Galerkin method (EFGM) is developed to obtain the final numerical results. The good agreement is obtained between the numerical results and the analytical ones. In addition, the influence of material gradient parameters and material distribution on the thermal fracture behavior is also presented.  相似文献   

7.
《Composites Part B》2001,32(2):111-121
Functionally graded materials (FGMs) have recently been received with considerable interest, primarily as high temperature resistant materials for space vehicles subjected to high temperature environment. FGMs are one of the composite materials and consist of continuous change of composition of different material components from one surface to the other. FGMs usually fabricated at high temperature at which the FGMs have stress free condition. After the FGMs cooled from the fabrication temperature to the room temperature residual thermal stresses produced. In this paper, elasto-plastic thermal stresses in a rectangular plate (FGP) of a particle reinforced composite FGM are treated by finite element method due to the microscopic combination law when the FGP is subjected to three kinds of temperature conditions, first is cooling from the fabricated temperature to the room temperature, second is heating and last is heating after cooling from the fabricated temperature. In the analysis, the thermal stress constitutive equation of a particle-reinforced composite taking temperature change and damage process into consideration is used. The effects of the particle volume fraction and the three kinds of temperature conditions on the stresses in the matrix, stresses in the particle and macroscopic stress are discussed.  相似文献   

8.
To analyse the residual stress and the thermal properties of functionally graded materials (FGMs), disc-type tetragonal zirconia polycrystal (TZP)/Ni- and TZP/stainless steel 304 (SUS304)-FGM were hot pressed, and compared with directly jointed materials (DJMs). The continuous interface and the microstructure of FGMs were characterized by electron probe microanalysis, wavelength dispersive spectrometry, optical microscopy and scanning electron microscopy. It has been verified that the defect-like cracks in FGMs are induced by the preferential shear stress and shown to cause fracture. These facts have corresponded well with the residual stress distribution analysed by the finite element method. The thermal diffusivity and the thermal conductivity of FGMs and DJMs were also measured by the laser flash technique. As a consequence, this work has described the interfacial stability, the residual stress release mechanism and the thermal protection characteristics of FGMs via a compositional gradient. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

9.
This paper addresses finite element evaluation of the non-singular T-stress and mixed-mode stress intensity factors in functionally graded materials (FGMs) under steady-state thermal loads by means of interaction integral. Interaction integral provides an accurate and efficient numerical framework in evaluating these fracture parameters in FGMs under thermal as well as mechanical loads. We use a non-equilibrium formulation and the corresponding auxiliary (secondary) fields tailored for FGMs. Graded finite elements have been developed to account for the spatial gradation of thermomechanical properties. This paper presents various numerical examples in which the accuracy of the present method is verified.  相似文献   

10.
This paper deals with the influence of microstructure on fracture toughness distribution in functionally graded materials (FGMs) consisting of partially stabilized zirconia (PSZ) and austenitic stainless steel SUS 304. FGMs and non-graded composites (non-FGMs) with fine and coarse microstructures are fabricated by powder metallurgy using PSZ and two kinds of SUS 304 powders. The fracture toughness is determined by conventional tests for several non-FGMs with each material composition and by a method utilizing stable crack growth in FGMs. The obtained results on the fracture toughness are as follows: (1) The fracture toughness increases with an increase in a content of SUS 304 on both FGMs and non-FGMs. (2) On the fracture toughness of the non-FGMs, the influence of microstructure is negligible. (3) On the FGMs, the fracture toughness is higher in the FGM with fine microstructure than in the FGM with coarse microstructure. (4) The fracture toughness of the FGMs is higher than that of the non-FGMs especially in the case of fine microstructure. Finally, the residual stress in the FGMs created in a fabrication process is estimated from the difference in fracture toughness between the FGMs and non-FGMs.  相似文献   

11.
Considering rotary, in-plane inertias, and fluid velocity potential, the dynamic characteristics of fluid-conveying functionally graded materials (FGMs) cylindrical shells subjected to dynamic mechanical and thermal loads are investigated, where material properties of FGM shells are considered as graded distribution across the shell thickness according to a power-law, and dynamic thermal loads applied on the shell is considered as non-linear distribution across the thickness of the shell. The linear response characteristics of fluid-conveying FGM cylindrical shells are obtained by using modal superposition and Newmark’s direct time integration method.  相似文献   

12.
In this study, a theoretical method is applied to investigate the multiple scattering of thermal waves and temperature field resulting from a subsurface cylindrical inclusion in a semi-infinite functionally graded material (FGM). The adiabatic boundary condition at the semi-infinite surface is considered. The thermal waves are excited at the surface of semi-infinite functionally graded materials by modulated optical beams. The model includes the multiple scattering effects of the cylindrical thermal wave generated by the line heat source. According to the wave equation of heat conduction, a general solution of scattered thermal waves is presented. Numerical calculations illustrate the effect of subsurface inclusion on the temperature and phase change at the sample surface under different physical and geometrical parameters. It is found that the temperature above the conducting cylindrical inclusion decreases because of the existence of the inclusion. The effect of the inclusion on the temperature and phase change at the surface is also related to the non-homogeneous parameter of FGMs, the wave frequency of thermal waves, and the distance between the inclusion and the semi-infinite surface. Finally, the effect of the relaxation time of buried inclusion on the temperature and phase change at the surface is examined.  相似文献   

13.
The weight function method provides a powerful approach for calculating the stress intensity factors for a homogeneous cracked body subjected to mechanical loadings. In this paper, the basic equations of weight function method for mode I and mixed mode crack problems in a two-dimensional functionally graded crack system are derived based on the Betti’s reciprocal theorem. The weight functions derived by the virtual crack extension technique are further used to calculate the stress intensity factors of functionally graded materials (FGMs). The practicability and accuracy of this proposed method has been confirmed by the comparison with theoretical or numerical solutions available in the literatures. On account that the repeated extractions of the distributions of normal stress and shear stress in the uncracked component along the prospective crack line under different loadings can be avoided using the method presented in this paper, this method can be potentially used for optimal design for FGMs under multiple-load cases.  相似文献   

14.
Mixed-mode crack analysis in unidirectionally and bidirectionally functionally graded materials is performed by using a boundary integral equation method. To make the analysis tractable, the Young's modulus of the functionally graded materials is assumed to be exponentially dependent on spatial variables, while the Poisson's ratio is assumed to be constant. The corresponding boundary value problem is formulated as a set of hypersingular traction boundary integral equations, which are solved numerically by using a Galerkin method. The present method is especially suited for straight cracks in infinite FGMs. Numerical results for the elastostatic stress intensity factors are presented and discussed. Special attention of the analysis is devoted to investigate the effects of the material gradients and the crack orientation on the elastostatic stress intensity factors.  相似文献   

15.
Functionally Graded Materials (FGMs) have been developed as super-resistant materials for propulsion systems and airframe of space-planes in order to decrease thermal stresses and to increase the effect of protection from heat. It has been experimentally observed that surface cracking in FGMs is the most common failure mode of a metal-ceramic FGM when it is subjected to a thermal shock. Therefore, it is very important to consider the thermally induced fracture behaviors of FGMs. In this paper, a functionally graded material strip containing an embedded or a surface crack perpendicular to its boundaries is considered. The graded region is treated as a large number of single layers, with each layer being homogeneous material. The problem is reduced to an integral equation and is solved numerically. Unlike most of the existing researches, which considered only certain assumed material distributions, the method developed in this paper can be used to investigate functionally graded materials with arbitrarily varied material properties.  相似文献   

16.
An edge crack in a strip of a functionally graded material (FGM) is studied under transient thermal loading conditions. The FGM is assumed having constant Young's modulus and Poisson's ratio, but the thermal properties of the material vary along the thickness direction of the strip. Thus the material is elastically homogeneous but thermally nonhomogeneous. This kind of FGMs include some ceramic/ceramic FGMs such as TiC/SiC, MoSi2/Al2O3 and MoSi2/SiC, and also some ceramic/metal FGMs such as zirconia/nickel and zirconia/steel. A multi-layered material model is used to solve the temperature field. By using the Laplace transform and an asymptotic analysis, an analytical first order temperature solution for short times is obtained. Thermal stress intensity factors (TSIFs) are calculated for a TiC/SiC FGM with various volume fraction profiles of the constituent materials. It is found that the TSIF could be reduced if the thermally shocked cracked edge of the FGM strip is pure TiC, whereas the TSIF is increased if the thermally shocked edge is pure SiC.  相似文献   

17.
《Composites Part B》2007,38(2):201-215
Nonlinear thermal bending analysis is presented for a simply supported, shear deformable functionally graded plate without or with piezoelectric actuators subjected to the combined action of thermal and electrical loads. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the plate surface and varied in the thickness direction and the electric field considered only has non-zero-valued component EZ. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and the material properties of both FGM and piezoelectric layers are assumed to be temperature-dependent. The governing equations of an FGM plate are based on a higher order shear deformation plate theory that includes thermo-piezoelectric effects. A two step perturbation technique is employed to determine the thermal load–deflection and thermal load–bending moment curves. The numerical illustrations concern nonlinear bending response of FGM plates without or with surface bonded piezoelectric actuators due to heat conduction and under different sets of electric loading conditions. The results reveal that for the case of heat conduction the nonlinear thermal bending responses are quite different to those of FGM plates subjected to transverse mechanical loads, and the temperature-dependency of FGMs could not be neglected in the thermal bending analysis.  相似文献   

18.
The stress concentration at the end of bonded lap joints is a major concern in the design and application of adhesive joints, and, therefore, many research works have been carried out to reduce the stress level in the bond line. Most of the proposed methods focus on changing adhesive geometries or properties to achieve an optimized model. In this paper, the stress and strain distribution for adherend with functionally graded properties was analyzed to investigate the effect of the adherend material properties and the type of joint on the stress distribution within bond line. The effect of ceramic volume fraction of the functionally graded materials (FGMs) on the stress concentration has been studied. Also, bi-adhesive joint is used as an alternative stress reduction technique for the joint. Results show that using bi-adhesively joint technique together with high-ceramic volume fraction FGMs can significantly reduce the shear and peel stress in the lap joint.  相似文献   

19.
An integrated micromechanical-structural framework is presented to analyze coupled heat conduction and deformations of functionally graded materials (FGM) having temperature and stress dependent viscoelastic constituents. A through-thickness continuous variation of the thermal and mechanical properties of the FGM is approximated as an assembly of homogeneous layers. Average thermo-mechanical properties in each homogeneous medium are computed using a simplified micromechanical model for particle reinforced composites. This micromechanical model consists of two isotropic constituents. The mechanical properties of each constituent are time–stress–temperature dependent. The thermal properties (coefficient of thermal expansion and thermal conductivity) of each constituent are allowed to vary with temperature. Sequentially coupled heat transfer and displacement analyses are performed, which allow analyzing stress/strain behaviors of FGM having time and temperature dependent material properties. The thermo-mechanical responses of the homogenized FGM obtained from micromechanical model are compared with experimental data and the results obtained from finite element (FE) analysis of FGMs having microstructural details. The present micromechanical-modeling approach is computationally efficient and shows good agreement with experiments in predicting time-dependent responses of FGMs. Our analysis forecasts a better design for creep resistant materials using particulate FGM composites.  相似文献   

20.
Nonlinear free vibration of microbeams made of functionally graded materials (FGMs) is investigated in this paper based on the modified couple stress theory and von Kármán geometric nonlinearity. The non-classical beam model is developed within the framework of Timoshenko beam theory which contains a material length scale parameter related to the material microstructures. The material properties of FGMs are assumed to be graded in the thickness direction according to the power law function and are determined by Mori-Tanaka homogenization technique. The higher-order nonlinear governing equations and boundary conditions are derived by using the Hamilton principle. A numerical method that makes use of the differential quadrature method together with an iterative algorithm is employed to determine the nonlinear vibration frequencies of the FGM microbeams with different boundary conditions. The influences of the length scale parameter, material property gradient index, slenderness ratio, and end supports on the nonlinear free vibration characteristics of the FGM microbeams are discussed in detail. It is found that both the linear and nonlinear frequencies increase significantly when the thickness of the FGM microbeam is comparable to the material length scale parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号