首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-resolution online reverse-phase-high-performance liquid chromatography (RP-HPLC)-fluorescence detector (Fd)-electrospray ionization-mass spectrometry (ESI-MS) separation and structural characterization of disaccharides prepared from heparin (Hep), heparan sulfate (HS), and various low-molecular-weight (LMW)-Hep using heparin lyases and derivatization with 2-aminoacridone (AMAC) are described. A total of 12 commercially available Hep/HS-derived unsaturated disaccharides were separated and unambiguously identified on the basis of their retention times and mass spectra. The constituent disaccharides of various samples, including unfractionated Hep/HS, fast-moving and slow-moving Hep components, and several marketed products, were characterized. Furthermore, for the first time, the saturated trisulfated disaccharide belonging to the nonreducing end of Heps was detected as being approximately 2% in unfractionated samples and ~15-21% in LMW-Heps prepared by nitrous acid depolymerization. No desalting of the commercial products prior to enzymatic digestion or prepurification steps to eliminate any excess of AMAC reagent or interference from proteins, peptides, and other sample impurities before RP-HPLC-Fd-ESI-MS injection were necessary. This method has applicability for the rapid differentiation of pharmaceutical Heps and LMW-Heps prepared by means of different depolymerization processes and for compositional analysis of small amounts of samples derived from biological sources by using the highly sensitive fluorescence detector.  相似文献   

2.
Heparin and heparan sulfate (HS) are important pharmaceutical targets because they bind a large number of proteins, including growth factors and cytokines, mediating many biological processes. Because of their biological significance and complexity, there is a need for development of rapid and sensitive analytical techniques for the characterization and compositional analysis of heparin and HS at the disaccharide level, as well as for the structure elucidation of larger glycosaminoglycan (GAG) sequences important for protein binding. In this work, we present a rapid method for analysis of disaccharide composition using reversed-phase ion-pairing ultraperformance liquid chromatography coupled with electrospray time-of-flight mass spectrometry ((RPIP)-UPLC-MS). Heparin disaccharide standards were eluted in less than 5 min. The method was used to determine the constituents of GAGs from unfractionated heparin/HS from various bovine and porcine tissues, and the results were compared with literature values.  相似文献   

3.
Saad OM  Leary JA 《Analytical chemistry》2003,75(13):2985-2995
A new method using a combination of electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MSn) was developed for the identification and quantitative analysis of eight heparan sulfate (HS)- and heparin-derived delta-disaccharides obtained by enzymatic depolymerization. The compositional analysis of nonisomeric disaccharide constituents of heparin/HS was achieved from full-scan MS1 spectra using an internal standard and a calculated response factor for each disaccharide. Diagnostic product ions from MSn spectra of isomeric disaccharides were used for the quantitative analysis of the relative amounts of each of the isomers in mixtures. The protocol was validated using several quality control samples and showed satisfactory accuracy and precision. The analysis is rapid, accurate, and uses no purification or separation steps prior to analysis by MS, thus reducing sample consumption and analysis time of traditional methods. Using this quantitative analysis procedure, percentages of disaccharide compositions for heparins from porcine and bovine intestinal mucosa and heparan sulfate from bovine kidney were determined.  相似文献   

4.
Saad OM  Leary JA 《Analytical chemistry》2005,77(18):5902-5911
Mass spectrometry, and specifically sequential stages of mass spectrometry (MSn), is an established tool for the analysis of carbohydrates, proteins, and more recently glycosaminoglycans. As this trend continues, the development of algorithms for the rapid and automatic interpretation of mass spectra to identify glycan structure is also expected to grow as an active field of research. The methodology described herein utilizes a combination of enzymatic digestion, ESI-MS, and MSn for the sequencing of small heparin oligosaccharides. The heparin oligosaccharide sequencing tool (HOST) is a basic software application that was developed to aid in the integration and analysis of the data generated from these experiments, facilitating the process involved in arriving at sequence information. The sequences of several heparin oligosaccharides were determined using this method to illustrate proof of principle. Tandem MS is a very rapid and efficient tool for oligosaccharide analysis when limited amounts of material are available. Having a means, such as HOST, for automating the interpretation of the MSn data generated from glycosaminoglycans, provides a practical methodology for the future analysis of heparin/HS oligosaccharides of unknown structure.  相似文献   

5.
A method for determining the sequence type of the disaccharide repeat region of cartilage samples is introduced. The samples are sequentially subjected to selective and nonselective enzymatic digestion, and the isomeric products from each step are quantified using tandem mass spectrometry. The two-step digestion/quantification protocol identifies whether the global makeup of the polymer is "alternating", "random", or "blocked" with respect to the two main components of the cartilage, 4- and 6-sulfated disaccharides. Using this procedure, the sequence type of two biologically isolated chondroitin polysaccharides was identified. The results for chondroitin sulfate A, isolated from bovine trachea, are consistent with the 4- and 6-sulfated disaccharides randomly distributed throughout the repeat region of the polysaccharide. For chondroitin sulfate C, shark cartilage, the 6-sulfated disaccharides are adjacent to each other to a larger extent than one would expect for a randomly distributed polymer, indicating that "blocks" of repeating disaccharides with the same sulfation site are present.  相似文献   

6.
7.
Unfractionated heparin is isolated from animal organs, predominantly porcine intestinal mucosa, and goes through an extensive process of purification before it can be used for pharmaceutical purposes. While the structural microheterogeneity of heparin is predominantly biosynthetically imprinted in the Golgi, subsequent steps involved in the purification and manufacture of commercial heparin can lead to the introduction of additional modifications. Postheparin crisis of 2008, it has become increasingly important to identify what additional structural diversity is introduced as a function of the purification process and thus can be determined as being heparin-related, as opposed to being an adulterant or contaminant, e.g., oversulfated chondroitin sulfate. Our study focuses on the identification of a previously unreported structure in heparin that arises due to specific steps used in the manufacturing process. This structure was initially observed as a disaccharide peak in a complete enzymatic digest of heparin, but its presence was later identified in the NMR spectra of intact heparin as well. Structural elucidation experiments involved isolation of this structure and analysis based on multidimensional NMR and liquid chromatography coupled with mass spectrometry (LC-MS). Heparin was also subjected to specific chemical reactions to determine which steps in the manufacturing process are responsible for this novel structure. Our results allowed for the definitive assignment of the structure of this novel process-related modification and enabled an identification of the putative steps in the process that give rise to the structure.  相似文献   

8.
The analysis of heparan sulfate glycosaminoglycans (HSGAGs) variations in human serum at the disaccharide level has a great potential for disease diagnosis and prognosis. However, the lack of available analytical methodology for the compositional analysis of HSGAGs in human serum remains to be addressed to delineate the possible role of HSGAGs on the onset and/or progression of a disease. In this study, we have developed a method for the in-depth compositional analysis of the 12 heparin/HS-derived disaccharides from human serum using a combination of technologies--fractionation, exhaustive digestion, solid phase extraction, and LC-MS/MS. The method exhibits high recovery (72-110%) and good reproducibility (standard deviation of less than 5%) with a low limit of detection and quantification. Errors from the method validation were within 1.1%. Nondetectable non- or low-sulfated disaccharides in human serum were also detected using the optimized protocol. Further applying this method, the comprehensive analysis of HSGAGs compositions in human sera from female donors showed considerable variations in disaccharide patterns and compositions.  相似文献   

9.
We have developed an ion-pairing HPLC-MS method that has sufficient separation power, selectivity, and sensitivity to investigate the enzymatic behavior of benzonase/alkaline phosphatase upon digestion of oligonucleotides and DNA. Mass spectrometry revealed that this enzyme pair can nonspecifically digest oligonucleotides and DNA into fragments ranging from 2 to 10 nucleotides, i.e., sizes suitable for routine mass spectrometric measurements. Trimers, tetramers, and pentamers are the most prominent digested products. This makes benzonase/alkaline phosphatase a promising choice for DNA and DNA adduct related studies that require a nonspecific enzyme. A computer software program developed in-house was critical in automating the processing of mass spectral data. The methodology described here provides a systematic approach for evaluating the behavior of DNA-cleaving enzymes by mass spectrometry.  相似文献   

10.
Heparin is a linear sulfated polysaccharide widely used in medicine because of its anticoagulant properties. The various sulfation and/or acetylation patterns on heparin impart different degrees of conformational change around the glycosidic bonds and subsequently alter its function as an anticoagulant, anticancer, or antiviral drug. Characterization of these structures is important for eventual elucidation of its function but presents itself as an analytical challenge due to the inherent heterogeneity of the carbohydrates. Heparin octasaccharide structural isomers of various sulfation patterns were investigated using ion mobility mass spectrometry (IMMS). In addition to distinguishing the isomers, we report the preparation and tandem mass spectrometry analysis for multiple sulfated or acetylated oligosaccharides. Herein, our data indicate that heparin octasaccharide isomers were separated on the basis of their structural conformations in the ion mobility cell. Subsequent to this separation, isomers were further distinguished using product ions resulting from tandem mass spectrometry. Overall, IMMS analysis was used to successfully characterize and separate individual isomers and subsequently measure their conformations.  相似文献   

11.
Currently there is great interest in the development of methods to simplify complex protein mixtures for analysis by proteomic strategies. The objective of this study was to develop and evaluate immobilized heparin chromatography to simplify such mixtures and to enrich minor proteins. The method is evaluated with cytosol from human breast cancer MCF-7 cells. This protein mixture was fractionated into three portions and eluted with a stepwise salt gradient. These were characterized by protein analysis, two-dimensional gel electrophoresis, and mass spectrometry, with attention to reproducibility, overlap between fractions, simplification of protein mixtures, and enrichment of low-abundance proteins. It was possible to identify proteins enriched in the fractionated mixtures that were not even detectable in gel arrays of the total cytosol. The method was shown to be suitable for integration with other proteomics strategies.  相似文献   

12.
In this work we describe a 96-well microplate assay for oversulfated chondroitin sulfate A (OSCS) in heparin, based on a water-soluble cationic polythiophene polymer (3-(2-(N-(N'-methylimidazole))ethoxy)-4-methylthiophene (LPTP)) and heparinase digestion of heparin. The assay takes advantage of several unique properties of heparin, OSCS, and LPTP, including OSCS inhibition of heparinase I and II activity, the molecular weight dependence of heparin-LPTP spectral shifts, and the distinct association of heparin fragments and OSCS to LPTP. These factors combine to enable detection of the presence of 0.003% w/w spiked OSCS in 10 μg of heparin sodium active pharmaceutical ingredient (API) using a plate reader and with visual detection to 0.1% levels. The same detection limit for OSCS was observed in the presence of 10% levels of dermatan sulfate (DS) or chondroitin sulfate A (CSA) impurities. In addition, we surveyed a selection of crude heparin samples received by the agency in 2008 and 2009 to determine average and extreme DS, CSA, and galactosamine weight percent levels. In the presence of these impurities and the variable heparin content in the crude heparin samples, spiked OSCS was reliably detected to the 0.1% w/w level using a plate reader. Finally, authentically OSCS contaminated heparin sodium API and crude samples were distinguished visually by color from control samples using the LPTP/heparinase test.  相似文献   

13.
Electrospray and tandem mass spectrometry are used to characterize underivatized oligosaccharides that have been digested from asparagine side chains of glycoproteins. Oligosaccharides that contain sialic acids were detected with the best sensitivity in the negative-ion detection mode whereas those that do not contain sialic acid were detected with the best sensitivity in the positive-ion detection mode. The positive-ion abundances of oligosaccharides were greatly enhanced in electrospray mass spectra by adding 10 mM sodium acetate or ammonium acetate to the sample solvent. Tandem mass spectrometry was used to determine primary structural features of the oligosaccharides. Methodology that has been developed on branched high-mannose, hybrid, and complex carbohydrate standards was applied to a mixture of oligosaccharides that were digested with N-glycanase from the glycoprotein, ovalbumin. The composition and relative abundances of individual oligosaccharides obtained from the electrospray mass spectrum compare favorably to those obtained by anion-exchange chromatography/pulsed amperometric detection and by gel permeation chromatography of the oligosaccharides after radiolabelling the reducing end of the carbohydrates. The oligosaccharide content of ovalbumin was independently determined from the heterogeneity observed in the electrospray mass spectrum of the intact 44-kDa glycoprotein. Comparison of the oligosaccharide compositions determined before and after enzymatic digestion shows a selective digestion of high-mannose and low molecular weight oligosaccharides by N-glycanase.  相似文献   

14.
Rapid and reliable detection, identification, and typing of bacterial species are necessary in response to natural or terrorist-caused outbreaks of infectious diseases and play crucial roles in diagnosis and efficient treatment. We report here two proteomic approaches with a high potential in the detection and identification of Coxiella burnetii, the causative agent of Q fever. The first of them starts with the acetonitrile (ACN) and trichloroacetic acid extractions of inactivated C. burnetii cells followed by the detection of extracted molecules and ions derived from the inactivated cells by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In the second approach, identification of the proteins extracted by ACN is accomplished after enzymatic digestion by electrospray tandem mass spectrometry coupled to a nanoscale ultraperformance liquid chromatography (LC-MS/MS). In order to observe morphological differences on the surface structures upon extraction, the inactivated and treated cells of the bacterium were examined by electron microscopy. The LC-MS/MS approach has allowed identification of 20 proteins in the ACN extracts of C. burnetii strain RSA 493 that were observed in more than 3 out of 10 experiments.  相似文献   

15.
Lin S  Yao G  Qi D  Li Y  Deng C  Yang P  Zhang X 《Analytical chemistry》2008,80(10):3655-3665
A fast and efficient proteolysis approach of microwave-assisted protein digestion was developed by using trypsin-immobilized magnetic silica (MS) microspheres. In the work, immobilization of the enzyme onto MS microspheres was very simple and only through a one-step reaction with 3-glycidoxypropyltrimethoxysilane (GLYMO) which provides the epoxy group as a reactive spacer. Considering that the magnetic particles are excellent microwave absorbers, we developed a novel microwave-assisted digestion method based on the easily prepared trypsin-immobilized MS microspheres. This novel digestion method combined the advantages of immobilized trypsin and the rapid-fashion of microwave-assisted digestion, which resulted in high digestion efficiency. BSA and myoglobin were used as model proteins to optimize the conditions of this method. Peptide fragments produced in 15 s could be confidently identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analysis. Equivalent or better digestion efficiency was observed comparing to current in-solution digestion. Besides, because of the unique magnetic responsivity, the immobilized trypsin can be isolated easily with the help of an external magnet and thus used repeatedly. High activity was obtained even after seven runs of the trypsin-immobilized MS microspheres. To further verify its efficiency in proteome analysis, one reversed-phase liquid chromatography (RPLC) fraction of rat liver extract was applied. After 15 s incubation, 16 totally unique peptides corresponding to two proteins were identified. Finally, the rat liver sample was used to evaluate its worth for the application. With analysis by liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS), comparable digestion efficiency was observed with typical in-solution digestion but the incubation time was largely shortened. This new microwave-assisted digestion method will hasten the application of the proteome technique to biomedical and clinical research.  相似文献   

16.
Improved in-solution tryptic digestion of proteins in terms of speed and peptide coverage was achieved with the aid of a novel acid-labile anionic surfactant (ALS). Unlike SDS, ALS solubilizes proteins without inhibiting trypsin or other common endopeptidases activity. Trypsin activity was evaluated in the presence of various denaturants; little or no decrease in proteolytic activity was observed in 0.1-1% ALS solutions (w/v). Sample preparation prior to mass spectrometry and liquid chromatography analysis consists of sample acidification. ALS degrades rapidly at low-pH conditions, which eliminates surfactant-caused interference with analysis. Described methodology combines the advantages of protein solubilization, rapid digestion, high peptide coverages, and easy sample preparation for mass spectrometry and liquid chromatography analyses.  相似文献   

17.
An interface is described that allows the direct coupling of high-performance alkaline anion exchange liquid chromatography with thermospray mass spectrometry. A membrane suppressor is used to remove nonvolatile alkaline salts from the mobile phase after the chromatographic process is completed and prior to introduction into the mass spectrometer. Examples are given of both isocratic and gradient separations of a three-component test mixture of N-acetylated mono- and disaccharides, followed by on-line mass spectral data acquisition. Sensitivity studies show minimum detection limits for the test compounds to be in the microgram range.  相似文献   

18.
Research was carried out with the aim of monitoring anaerobic digestion processes using thermal analysis with the aid of mass spectrometry so as to define the stability of the digestate obtained. Three different systems were investigated under varying conditions. The digestion of waste sludge from a pharmaceutical industry (PI) and the digestion of cattle manure (CM) were evaluated under mesophilic conditions. The co-digestion of a mixture of primary sludge (PS) and the organic fraction of municipal solid wastes (OFMSW) was studied under thermophilic conditions. Temperature-programmed combustion tests were carried out to investigate the degree of stabilization of samples throughout the digestion processes. The derivative thermogravimetry (DTG) profiles obtained for the mesophilic digestion of PI waste showed a decrease at low temperatures and an increase at high temperatures in the intensity of the peaks recorded as the stabilization process proceeded. These results are in accordance with those obtained by the present authors in their previous work on the mesophilic digestion of primary sludge and OFMSW. In contrast, the DTG profiles obtained from the stabilization process of CM and thermophilic codigestion of PS and OFMSW showed a reduction in peaks at high temperatures. When the stabilization products obtained from CM by anaerobic digestion and by composting processes were compared, it was observed that the composting process was capable of further decomposing materials readily oxidized at low temperatures and increasing the presence of structurally more complex substances. The evolution of the differential thermal analysis (DTA) signal recorded simultaneously showed considerable similarity to the mass/charge (m/z) signal 44 registered by the mass spectrometer. The use of mass spectrometry helped to clarify the inner workings of the digestion process.  相似文献   

19.
In this article, we introduce a method using nanoscale ion-pair reversed-phase high-performance liquid chromatography (nano-IP-RP-HPLC) hyphenated to nanoelectrospray ionization high-resolution mass spectrometry (nano-ESI-HRMS) to separate and identify metabolites in cell extracts. Separation of metabolites was performed on a 100 μm i.d. C18 column with tributylamine (TBA) as the ion-pairing reagent and methanol as the eluent. Basic pH (9.4) of the mobile phase was critical to achieve sufficient retention and sharp metabolite elution at a low concentration of TBA (1.7 mM). Limits of detection were determined for 54 standards with an LTQ-Orbitrap mass spectrometer to be in the upper attomole to low femtomole range for key metabolites such as nucleotides, phosphorylated sugars, organic acids, and coenzyme A thioesters in solvent as well as in a complex matrix. To further evaluate the method, metabolome analysis was performed injecting different amounts of biomass of the methylotroph model organism Methylobacterium extorquens AM1. A (12)C/(13)C labeling strategy was implemented to improve metabolite identification. Analysis of three biological replicates performed with 1.5 ng of cell dry weight biomass equivalents resulted in the identification of 20 ± 4 metabolites, and analysis of 150 ng allowed identifying 157 ± 5 metabolites from a large spectrum of metabolite classes.  相似文献   

20.
Heparin and the low molecular weight heparins are extensively used as medicinal products to prevent and treat the formation of venous and arterial thrombi. In early 2008, administration of some heparin lots was associated with the advent of severe adverse effects, indicative of an anaphylactoid-like response. Application of orthogonal analytical tools enabled detection and identification of the contaminant as oversulfated chondroitin sulfate (OSCS) was reported in our earlier report. Herein, we investigate whether enzymatic depolymerization using the bacterially derived heparinases, given the structural understanding of their substrate specificity, can be used to identify the presence of OSCS in heparin. We also extend this analysis to examine the effect of other persulfonated glycosaminoglycans (GAGs) on the action of the heparinases. We find that all persulfonated GAGs examined were effective inhibitors of heparinase I, with IC(50) values ranging from approximately 0.5-2 μg/mL. Finally, using this biochemical understanding, we develop a rapid, simple assay to assess the purity of heparin using heparinase digestion followed by size-exclusion HPLC analysis to identify and quantify digestion products. In the context of the assay, we demonstrate that less than 0.1% (w/w) of OSCS (and other persulfonated polysaccharides) can routinely be detected in heparin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号