首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. El Fadar  A. Mimet 《Solar Energy》2009,83(6):850-861
This article suggests a numerical study of a continuous adsorption refrigeration system consisting of two adsorbent beds and powered by parabolic trough solar collector (PTC). Activated carbon as adsorbent and ammonia as refrigerant are selected. A predictive model accounting for heat balance in the solar collector components and instantaneous heat and mass transfer in adsorbent bed is presented. The validity of the theoretical model has been tested by comparison with experimental data of the temperature evolution within the adsorber during isosteric heating phase. A good agreement is obtained. The system performance is assessed in terms of specific cooling power (SCP), refrigeration cycle COP (COPcycle) and solar coefficient of performance (COPs), which were evaluated by a cycle simulation computer program. The temperature, pressure and adsorbed mass profiles in the two adsorbers have been shown. The influences of some important operating and design parameters on the system performance have been analyzed.The study has put in evidence the ability of such a system to achieve a promising performance and to overcome the intermittence of the adsorption refrigeration systems driven by solar energy. Under the climatic conditions of daily solar radiation being about 14 MJ per 0.8 m2 (17.5 MJ/m2) and operating conditions of evaporating temperature, Tev = 0 °C, condensing temperature, Tcon = 30 °C and heat source temperature of 100 °C, the results indicate that the system could achieve a SCP of the order of 104 W/kg, a refrigeration cycle COP of 0.43, and it could produce a daily useful cooling of 2515 kJ per 0.8 m2 of collector area, while its gross solar COP could reach 0.18.  相似文献   

2.
Belal Dawoud   《Renewable Energy》2007,32(6):947-964
A concept of a hybrid adsorption cooling unit for vaccine storage utilizing solar energy as a main power supply and a gas burner as an alternative power supply has been developed. The components of the cooling unit have been designed to work under the weathering conditions of Burkina Faso, West coast of Africa according to the requirements of the World Health Organization. For the first adsorber, which is driven by a gas burner, zeolite-13X has been selected. For the second adsorber to be driven by solar energy selective water sorbent SWS-2L has been applied. Water is selected as a refrigerant for both adsorbents. Theoretical investigations of the expected performance of the designed cooling unit have shown a coefficient of performance (COP) of 0.28 for the solar-operated system based on the heat input to the adsorption unit, at the design conditions of Tevap=−5 °C, Tcon=55 °C, Tads=38 °C, Tdes(max)=122 °C. For the gas-heated system, also a COP of 0.28 has been estimated at the design conditions of Tevap=−5 °C, Tcon=55 °C, Tads=38 °C, Tdes(max)=280 °C. The variations of COP, cooling capacity and the heating power required to operate both systems have been estimated for a broad range of desorption temperatures. It turns out that the SWS-2L/water system is much more sensitive to the operating conditions than the zeolite-13X/water system. The obtained results should serve in designing both control and heating components of the cooling unit.  相似文献   

3.
In this paper, the performance of the solar‐driven ejector air conditioning with several environment‐friendly working fluids is studied. The effect of the fluid nature and operating conditions on the ejector performance is examined. This performance is calculated using an empirical correlation. Thermodynamic properties of functioning fluids are obtained with a package REFPROP7. It appears that the refrigerant R717 offers the highest coefficient of performance (COP). For generator temperature TB = 90°C, condenser temperature TC = 35°C and evaporator temperature TE = 15°C and with R717, the COP of ejector air‐conditioning system is 0.408. Using a meteorological data for the city of Tunis, the system performance is computed for three collector types. The air‐conditioning season and period were taken for six months from April to September. The daily period is between 8 and 17 h. For the solar air‐conditioning application, the COP of the overall system varied from 0.21 to 0.28 and the exergy efficiency varied from 0.14 to 0.19 with the same working conditions and total solar radiation (351–875 Wm?2) in July. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
ABSTRACT

Conventional solar heat-driven single stage two bed chillers demand a large area for installation of solar thermal collector to activate the chiller, but in a highly populated tropical country open spaces is insufficient. In the intention to utilize accessible solar energy with better performance, a mathematical investigation is carried out with a three bed adsorption cooling unit working with silica gel-water pair. The studied chiller is powered by direct solar heat collected by a series of compound parabolic concentrator solar thermal collectors without any heat or mass recovery. The working principal of the chiller is, in principle, the same as the conventional two-bed adsorption chiller. However, instead of two half cycles, there are three one third cycles in the proposed chiller in which at every cycle the former desorber is kept in the precooling mode and as an adsorber for the next two one third cycles, respectively. As desorption kinetic is faster than the adsorption kinetics, this longer precooling mode helps the silica gel granules to adsorb more water molecules and increase evaporation rate. Hence, a better cooling effect of at least 1°C can be observed, increases chiller working hour after sunset for almost a further one hour.  相似文献   

5.
A pilot unit for a concentrated solar thermal reactor with solar tracking was constructed. A 70 cm diameter concentrator dish could provide temperatures around 800 °C at a fairly steady rate. In the search for a redox pair that can work at such temperatures, studies were conducted on the feasibility of the Pb/PbO cycle for the splitting of H2O for H2 production. Thermodynamics accounting for the vapor pressures of Pb and PbO indicated favorable water splitting until approximately 900 °C, at atmospheric steam pressures. After 1000 °C, the vapor pressure of PbO becomes greater than that of Pb, as a result, thermodynamic favorability in the gas phase begins to be suppressed. The thermodynamic estimations were tested experimentally both in lab scale, and in bench scale molten bed reactors. The process went through similar maxima in the hydrogen production rates. The field tests in solar concentrator using a Pb coated mullite system did not reveal much due to evaporative loss of Pb and PbO under high solar flux. In this paper, it was demonstrated that the relatively high vapor pressure of Pb and PbO can be exploited for designing efficient water splitting cycles at temperatures <1000 °C using a PbO vapor recovery and circulation system.  相似文献   

6.
The combination of ionic liquid-refrigerant based [EMIM][DMP]-H2O as an alternative working pair for single effect vapor absorption cycles (VACs) is assessed and optimized by using energy and exergy based performances. Thermodynamics properties of binary mixture of [EMIM] [DMP]-H2O like Dühring's (P-T-x1) and h-T-X1 plots are computed from the activity coefficient based non-random two-liquid model (NRTL) model. Further modeling and simulation of VACs are accomplished in open source Scilab as mathematical programing software and used to ascertain the optimal generator temperature established on energetic and exergetic COP. Optimal results include an extensive range of temperatures like Te from 2.5 to 15°C and Ta and Tc from 30 to 45°C. Simulation of the single effect VAC with SHE by using [EMIM][DMP]-H2O mixture at Te = 10°C, Tg = 100°C, Ta = 30°C, and Tc = 40°C were evaluated and compared with the 5 working fluids. Simulation outcomes depicted greater COP of 0.82 for [EMIM][DMP]-H2O in comparison with NH3-H2O, EMISE-H2O, [EMIM][BF4]-H2O and nearly equal to LiBr-H2O (COP = 0.83). In addition, the effect of Tg on the COP, ECOP f , and composition are compared and optimized for the evaporation temperature range from 2.5 to 15°C, Ta/Tc from 30 to 45°C and cooling water (CW) flow in series and parallel. Additionally, the optimal Tg exhibited distinction based on energy and exergy analysis. Thus, it resulted in optimized performances of [EMIM] [DMP]-H2O that can be suitable to replace corrosive aqueous LiBr in VACs.  相似文献   

7.
8.
《Energy Conversion and Management》2005,46(13-14):2301-2316
A new type of adsorber for an adsorption ice maker on fishing boats, which uses a compound adsorbent (activated carbon and CaCl2) and ammonia working pair, is designed. This type of heat pipe adsorber solves the problem of incompatibility between ammonia, copper, seawater and steel. The heating/cooling power for the adsorption/desorption process of the adsorbent, which is required to be transferred by one heat pipe in the adsorber, is computed by the test results of the adsorbent, and the heat transfer performance of one heat pipe in the adsorber is simulated according to the theory of the two phase closed thermosyphon. The heat transfer performance of the heat pipe can meet the heat demands for adsorption/desorption of the adsorbent when the evaporating temperature is −15 °C and the cycle time is 10 min. A test unit is set up to test the heating/cooling performance of the heat pipe type adsorber, and the experimental results are coincident with the simulation. The performance of a two bed adsorption ice maker with heat pipe adsorbers is predicted, and the cooling power is about 17.1–17.8 kW at the evaporating temperature of −15 °C and cycle time of 10 min with mass recovery between two 29 kg compound adsorbent beds.  相似文献   

9.
A recent study of the design of solar distillation with solar radiation concentration was carried out by an independent device. Transformer oil was used as a fluid to transfer heat to the distilled basin. The design and operational variables are essential, such as distiller dimensions, concentration ratio, pressure, and temperature. A mathematical model was proposed to simulate the system for 2 July 2018 from 10 am to 4 pm  in the climatic conditions of the city of Kirkuk, Iraq. Fuzzy logic (FL) was used to select the affected parameters: water temperature (Tw), water pressure (Pw), glass temperature (Tg), and vapor pressure (Pg) which have a separated membership function that control the linguistic variables. The results showed that the best performance of the distiller is at Tw = 100°C, Pg = 10 000 Pa, Tg = 20°C, and Pw = 20 000 Pa, and concentration ratio of 30. This study used FL to analyze solar distiller performance and identify optimum temperature, pressure, and concentration ratio on the productivity of solar distiller.  相似文献   

10.
The use of concentrated solar energy as the high-temperature heat source for the thermochemical gasification of biomass is a promising prospect for producing CO2-neutral chemical fuels (syngas). The solar process saves biomass resource because partial combustion of the feedstock is avoided, it increases the energy conversion efficiency because the calorific value of the feedstock is upgraded by the solar power input, and it also reduces the need for downstream gas cleaning and separation because the gas products are not contaminated by combustion by-products. A new concept of solar spouted bed reactor with continuous biomass injection was designed in order to enhance heat transfer in the reactor, to improve the gasification rates and gas yields by providing constant stirring of the particles, and to enable continuous operation. Thermal simulations of the prototype were performed to calculate temperature distributions and validate the reactor design at 1.5 kW scale. The reliable operation of the solar reactor based on this new design was also experimentally demonstrated under real solar irradiation using a parabolic dish concentrator. Wood particles were continuously gasified at temperatures ranging from 1100 °C to 1300 °C using either CO2 or steam as oxidizing agent. Carbon conversion rates over 94% and gas productions over 70 mmol/gbiomass were achieved. The energy contained in the biomass was upgraded thanks to the solar energy input by a factor of up to 1.21.  相似文献   

11.
《Energy Conversion and Management》2005,46(13-14):2032-2041
A solar adsorption ice maker with activated carbon–methanol adsorption pair was developed for a practical application. Its main features include utilization of a water cooled condenser and removing all valves in the refrigerant circuit except the one that is necessary for refrigerant charging. Year round performance tests of the solar ice maker were performed in Kunming, Yunnan Province, China. Test results show that the COP (coefficient of performance) of the solar ice maker is about 0.083–0.127, and its daily ice production varies within the range of 3.2–6.5 kg/m2 under the climatic conditions of daily solar radiation on the surface of the adsorbent bed being about 15–23 MJ/m2 and the daily average ambient temperature being within 7.7–21.1 °C. The suitable daily solar radiation under which the solar ice maker can run effectively in Kunming is above 16 MJ/m2.  相似文献   

12.
The aim of the current paper is to propose a study of a novel solar adsorptive cooling system, using activated carbon–ammonia pair, coupled with a parabolic trough collector (PTC) and a water-stainless steel heat pipe. A theoretical model, based on the thermodynamics of the adsorption process, heat and mass transfer within the porous medium and energy balance in the hybrid system components, is developed and a simulation code, written in FORTRAN, is carried out. This model, which has been validated by experimentation results, computes the temperature, pressure and adsorbed mass inside the adsorbent bed. The performance is assessed in terms of specific cooling power (SCP) and solar coefficient of performance (COPs). Furthermore, the effect of some important parameters on the system performance is discussed, and an optimization of these parameters is given.The simulation results have shown that there exists, for each aperture width value of the collector (W), an optimum external radius of adsorbent bed (R2). Under the operating and design conditions of evaporation temperature Tev = 0 °C, condensing temperature Tcon = 28 °C, adsorption temperature Tads = 24 °C, W = 0.70 m, R2 = 0.145 m and reactor length of 0.5 m, an optimal corresponding COPs is found to be of the order of 0.18.  相似文献   

13.
In this paper we present the study of adsorption refrigerator which use an activated carbon-pair ammonia. The ability of activated carbons to adsorb large mass of ammonia makes them ideal for use in adsorption refrigeration and pump systems. These systems have not reasonable efficiency. In order to make these systems economically viable, their size must be reduced. This implies a need for a rapid heating and cooling the adsorbent/refrigerant pair. However, the main problems to be overcome is related to the poor heat transfer in the adsorbent bed. So, it is necessary to study and understand the heat and mass transfer within the bed and to improve it. A detailed model of heat and mass transfer into the generator has been developed. For a given heat flux, temperature and adsorbed mass have been computed in every point at each step time along the adsorbed bed (generator). Experimental installation simulating an adsorption machine working within a temperature ranging from 20 to 250 °C and pressure ranging from 0 to 2.5 × 106 Pa, allows for identification of the generator's equivalent thermal conductivity and internal heat transfer coefficient. These two parameters are then used to simulate thermal performance of a design whose features include the insertion of stainless steel water heat pipe (HP's) condensers into the generator. The HP's evaporator heat input is of solar origin using a compound parabolic collector (CPC). Nominal Solar coefficient of performance, COPs =14.37% obtained through both Adimensional Exergy Loss (AEL), and COP study, shows the competitiveness of the proposed design.  相似文献   

14.
Spray-pyrolysed selective cobalt-oxide (CoOx) coatings were prepared on the surface of a bright nickel-plated copper tubular absorber (α = 0.89–0.91 and ?100°C = 0.18) for operation in conjunction with a prototype linear Fresnel reflector solar concentrator (LFRSC). Some preliminary tests were conducted to study the optical and thermal performance characteristics of the selective cobalt-oxide coated absorber in the concentrated solar flux. The tests conducted included determination of the overall heat loss coefficient UL of the absorber at temperatures from 50 to ~ 120°C, and the optical efficiency ηo of the concentrator-absorber system, and measurement of the stagnation temperature of the absorber with the prototype solar concentrator. Based on the results of UL and ηo measurements, the thermal efficiency η of the concentrator-absorber system at a working temperature of 115°C has been determined for a typical beam radiation Ib of 600 W/m2. Further, comparison of the results of this study with those obtained using a dimensionally identical black-painted absorber indicates that the performance of the selective cobalt-oxide coated absorber is considerably superior to that of an ordinary black-painted absorber.  相似文献   

15.
In this study, the performance of a solar heating system with a heat pump was investigated both experimentally and theoretically. The experimental results were obtained from November to April during the heating season. The experimentally obtained results are used to calculate the heat pump coefficient of performance (COP), seasonal heating performance, the fraction of annual load met by free energy, storage and collector efficiencies and total energy consumption of the systems during the heating season. The average seasonal heating performance values are 4.0 and 3.0 for series and parallel heat pump systems, respectively. A mathematical model was also developed for the analysis of the solar heating system. The model consists of dynamic and heat transfer relations concerning the fundamental components in the system such as solar collector, latent heat thermal energy storage tank, compressor, condenser, evaporator and meteorological data. Some model parameters of the system such as COP, theoretical collector numbers (Nc), collector efficiency, heating capacity, compressor power, and temperatures (T1, T2, T3, TT) in the storage tank were calculated by using the experimental results. It is concluded that the theoretical model agreed well with the experimental results.  相似文献   

16.
An adsorption icemaker with energy storage system is proposed for the utilization of medium temperature solar energy. In this system, the solar energy collected by parabolic trough collector (PTC) was used to provide the heat source for the adsorption icemaker. The performance of the icemaker is tested and the experimental results showed that the highest COP reached 0.15 while the COPsr could be 0.08 and the ice making capacity was 50 kg per day with 20 m2 PTC and 30 kg compound adsorbent (calcium chloride + activated carbon) when the desorption temperature, condensing temperature and the direct normal solar radiation were 105 °C, 30 °C and 3 kWh/day·m2, respectively.  相似文献   

17.
The present study uses basic thermodynamic relationships capable of assisting in the design of a solar refrigerator for agricultural products refrigeration. The data used for calculation are daily average meteorological data collected over a period of five years in Hun city in Lybia, taking 1988 as a reference year and 2000 to 2003 for comparison. The investigated adsorption refrigeration cycle consists mainly of generator, condenser, evaporator and adsorber. The adsorption refrigeration cycle is assumed to be accomplished by the removal of heat through the evaporator at low pressure and heat rejection through the condenser at high pressure. The products refrigeration requires a temperature from 2 to 8°C. In these calculations, however, a temperature range from 0 to 8°C was taken into account in order to cover any losses. The calculations resulted in an average generator energy, Qg, of 4.59 kWh/m2 per day, an average ammonia consumption, ma, of 0.0279 mass of ammonia per unit mass of activated carbon. The average coefficient of performance, COP, for the reference year was 0.555 and remained almost constant at 0.530 in the comparison years. The average evaporation energy Qe, was 2.460 kWh/m2 per day for the reference year and did not change in comparison years.  相似文献   

18.
Solar refrigeration represents an important application of solar energy due to the excellent matching between the high sunshine and the refrigeration needs. Solar adsorption refrigeration devices are among the significant techniques used to meet the needs for cooling requirements. Several solar refrigeration systems have been proposed and are under development such as sorption systems including liquid/vapor, solid/vapor absorption, adsorption, vapor compression and others. The purpose of this paper is to identify the influence of a cylindrical adsorber on the performances of a solar adsorption refrigerating machine. The adsorber heated by solar energy contains an activated carbon–ammonia pair; it is composed by many cylindrical tubes welded using external fins. A model based on the conservation equations of energy and mass in the adsorber has been developed and well described. Using real solar irradiance data as well as many initial conditions, the model computes for each point and in the considered time interval during the day, the temperature, the adsorbed mass, the pressure inside the adsorber and the solar performance coefficient (COP). The results show that the optimal diameter of the adsorber with fins is greater than the one without fins. Moreover the mass cycled in the case of an adsorber equipped with external fins is more significant than the one without fins, and the maximal temperature reached in the adsorber with fins attains 97 °C while in the adsorber without fins reaches 77 °C. Thus, the performances of the solar adsorption refrigerating machine with an adsorber equipped with fins are higher than the machine without fins.  相似文献   

19.
The use of low‐temperature heat (between 50 and 90°C) is studied to drive absorption systems in two different applications: refrigeration and heat pump cycles. Double‐ and triple‐stage absorption systems are modelled and simulated, allowing a comparison between the absorbent–refrigerant solutions H2O–NH3, LiNO3–NH3 and NaSCN–NH3. The results obtained for the double‐stage cycle show that in the refrigeration cycle the LiNO3–NH3 solution operates with a COP of 0.32, the H2O–NH3 pair with a COP of 0.29 and the NaSCN–NH3 solution with a COP of 0.27, when it evaporates at ?15°C, condenses and absorbs refrigerant at 40°C and generates vapour at 90°C. The results are presented for double‐ and triple‐stage absorption systems with evaporation temperatures ranging between ?40 and 0°C and condensation temperatures ranging from 15°C to 45°C. The results obtained for the double‐stage heat pump cycle show that the LiNO3–NH3 solution reaches a COP of 1.32, the NaSCN–NH3 pair a COP of 1.30 and the H2O–NH3 mixture a COP of 1.24, when it condenses and absorbs refrigerant at 50°C, evaporates at 0°C and generates vapour at 90°C. For the double‐ and triple‐stage cycles, the results are presented for evaporation temperatures ranging between 0 and 15°C. The minimum temperature required in the generators to operate the refrigeration and heat pump cycles are also presented. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
A low capacity twin‐bed adsorption refrigeration system has been built with R134a as a refrigerant and activated carbon as the adsorbent. Simple tube‐in‐tube heat exchangers have been fabricated and have been used as the adsorber beds. Activated carbon (granular type) has been filled in the annular space of the inner tube and outer tube. A plate heat exchanger has been used as the condenser and the temperature of cooling water has been maintained between 25°C and 30°C, also the evaporator has been custom designed as per requirements. A mathematical model has also been developed and the results obtained have been found to be comparable. While operating the system in the single‐bed mode a cooling power of 250.4 W has been obtained with a coefficient of performance (COP) of 0.38 with an average evaporator temperature of 18.4°C against a predicted value of 263.7 W with a COP of 0.41. While operating in the twin‐bed mode a cooling power of 281.3 W with a COP of 0.47 with an average evaporator temperature of 17.6°C has been obtained against a predicted value of 294.5 W with a COP of 0.52.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号