首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
为解决在真空腔体中如何利用燕尾槽进行O形圈密封的问题,首先介绍了燕尾槽在金属有机物化学气相沉积(MOCVD)设备研制中的应用,接着介绍了O形圈密封失效的准则,然后利用ANSYS商用软件对不同规格的O形圈及相应的燕尾槽建立了模型,并进行了分析和计算,最后得到了具有较高工程指导价值的结论.研究结果表明,在O形圈密封中,当密...  相似文献   

2.
O形圈动密封特性的有限元分析   总被引:1,自引:0,他引:1  
利用软件ABAQUS建立了O形圈的轴对称有限元模型,分析了其在往复动密封中的密封性能,并对其不同工况下的力学性能进行了研究。结果表明:往复动密封中,O形圈主密封面最大接触应力与Von Mises应力的作用位置随运动方向的变化而改变,且大小随时间呈波动变化;速度小于0.25 m/s时,速度对摩擦力与剪切应力几乎无影响;随着摩擦系数、介质压力的增大,摩擦力与剪切应力对速度的敏感性变高;介质压力与摩擦系数对摩擦力与剪切应力影响较大,剪切应力与摩擦力呈同步变化;密封外行程Von Mises应力与剪切应力均大于内行程,更易引起疲劳与剪切破坏;预压缩率增加到一定值时,O形圈在动密封中所受的摩擦力急剧上升,动密封中预压缩率不宜过大。  相似文献   

3.
O形圈材料选择与密封结构设计   总被引:4,自引:0,他引:4  
O形圈是最常用的密封方式之一。文章对工业产品密封胶料的选用要素进行了详细分析,并对O形圈尺寸的选择、密封沟槽设计、密封配合间隙进行了分析。  相似文献   

4.
为建立合理的飞机飞控系统液压作动器的虚拟样机,必须对其关键部件密封圈的受力状况进行计算分析。借助大型非线性有限元分析软件ANSYS建立密封圈的二维轴对称有限元模型,对液压伺服作动器的O形橡胶密封圈进行有限元分析,得出密封圈的初始截面压缩量及周向拉伸量对O形圈密封性能的综合影响规律。结果表明:增加压缩量可以提高O形圈的密封性,同时也使其容易出现裂纹;当压缩量较小时,拉伸量对O形圈的密封性能影响较大;容易出现裂纹的位置主要随油压的大小而变化。  相似文献   

5.
水下机器人耐压壳体O形圈密封性能有限元分析   总被引:1,自引:0,他引:1  
由于水下机器人工作环境的特殊性,对其耐压壳体的密封性能有严格要求,而其O形密封圈在其中起到至关重要的作用。文中基于橡胶密封结构的非线性有限元理论,应用有限元分析软件ABAQUS建立O形密封圈的二维轴对称模型,对某水下机器人耐压壳体中O形密封圈在设计条件下的受力情况及特性进行了分析,得到了在设计水深条件下的O形密封圈变形情况、应力分布及最大接触压力。结果表明:密封面上最大接触压力大于外部海水压力。通过试验验证了某耐压壳体密封设计的可靠性。  相似文献   

6.
利用ANSYS Workbench软件建立了一个航空液压作动器O形圈静密封数值仿真模型,研究了O形圈在不同压合量、油液压力、温度等条件下的接触压力分布和Mises应力分布,以此得到压合量、油液压力、温度等因素对O形圈静密封性能和使用寿命的影响。结果表明:随压合量、油液压力的增大或者温度的升高,O形圈的最大接触压力和最大Mises应力都增大,密封性能良好但是使用寿命下降。计算了各压合量和油液压力下O形圈的有效密封宽度,并利用有效密封宽度来评价O形圈静密封的可靠性。  相似文献   

7.
橡胶O形圈密封性能的有限元分析   总被引:6,自引:0,他引:6  
采用ABAQUS有限元分析软件建立O形密封圈的二维轴对称模型,研究预压缩率与介质压力对O形圈VonMises应力、接触应力、接触长度的影响,确定O形圈容易失效的位置,并使用Karaszkiewicz接触公式对有限元分析的结果进行验证。结果表明:O形圈和密封槽转角接触部位容易失效;接触应力呈抛物线分布,接触应力、接触长度随着预压缩率、介质压力增大而增大,有限元计算值与Karaszkiewicz公式计算值较为一致,验证了有限元分析结果的可靠性。  相似文献   

8.
利用ABAQUS软件建立了高压氢气环境下橡胶O形圈静密封结构的有限元分析模型,研究了高压氢气作用下由于橡胶材料的吸氢膨胀对O形圈变形及应力的影响,探讨了不同初始压缩率、氢气压力、沟槽间隙、有无挡圈等工况下O形圈最大Von Mises应力、最大剪切应力和最大接触应力的变化规律。结果表明:高压氢气环境下,吸氢膨胀会导致橡胶O形圈的截面高度和面积的增加,但对O形圈的应力基本无影响。增加O形圈压缩率会提高初始安装工况下的接触应力,有利于初始密封的形成,但当介质压力较大时,过高的压缩率会显著增加剪切应力,导致O形圈发生剪切破坏。相较于低压工况,高压下密封沟槽间隙对O形圈的Mises应力和剪切的影响非常显著,较大的沟槽间隙会使O形圈发生挤出和剪切破坏,而安装密封挡圈可明显改善O形圈的变形和应力情况,有效防止O形圈被挤入沟槽间隙,同时提高密封性能。  相似文献   

9.
丁腈橡胶O形圈的静密封及微动密封特性   总被引:3,自引:0,他引:3  
利用有限元软件Abaqus建立丁腈橡胶O形圈的轴对称有限元分析模型,分析丁腈橡胶O形圈作为静密封和微动密封时的性能参数.研究表明,O形圈作为静密封时,当流体压力达到6 MPa以上时,必须使用挡圈来避免装配间隙倒角处的剪切失效并提高O形圈的工作压力;在微动密封内外行程中,O形圈的Von Mises应力分布存在较大差异,极值位置变化趋势相反,并且内外行程分别存在一随流体压力增加而增加的固定临界黏滑位移,微动位移小于该值时,O形圈处于黏滑状态,微动位移大于该值时,O形圈发生完全滑动;压缩率增加时,O形圈往复运动过程中受到的滑动摩擦力会急剧增加,在保证密封性的基础上,压缩率取值不宜过大.  相似文献   

10.
为优化封隔器配套用O形圈压缩率选用,在对比国内外O形圈设计标准基础上,在不同工况下对某规格的O形圈进行摩擦力和液密、气密试验测试与有限元模拟计算。综合试验与有限元模拟结果,在35 MPa的密封要求下,提出封隔器配套用O形圈的压缩率推荐值为10%~13%。该设计值小于国际标准值,在满足操作工况允许的载荷条件下,摩擦力降低约47.8%,有效地解决了O形圈密封性能和摩擦力之间的协调性问题。  相似文献   

11.
O形密封圈接触压力的有限元分析   总被引:6,自引:0,他引:6  
采用有限元分析软件ANSYS建立了O形橡胶密封圈的二维轴对称模型,分析了在空气介质中O形圈和接触表面之间产生的接触压力与O形圈的截面尺寸、内径、压缩率及硬度的关系,并用统计分析法得到了回归方程。该方程描述了不同参数对O形圈所受接触压力的影响,进而可计算理论摩擦力,并可用于O形密封圈相关结构的力学分析及重要场合下O形圈的正确选用。  相似文献   

12.
O形橡胶密封圈密封性能的有限元分析   总被引:16,自引:11,他引:16  
利用ANSYS建立了液压系统中液压缸用O形橡胶密封圈的二维轴对称模型,分析计算了O形密封圈缸筒和轴套的间隙、密封轴套槽口倒角半径、O形密封圈的截面尺寸、橡胶材料参数、初始压缩率对密封面最大接触压力和剪切应力的影响。结果表明:O形密封圈缸筒和轴套的间隙对剪切应力的影响很大;轴套沟槽宽度、O形密封圈的截面尺寸和橡胶材料参数对密封面最大接触压力的影响很大;初始压缩率对密封面最大接触压力和剪切应力的影响都很大;对于本文分析的结构,在其它条件不变的情况下密封轴套槽口倒角半径对密封面最大接触压力和剪切应力的影响都不大;分析结果验证了长期使用的经验设计。  相似文献   

13.
O形橡胶密封圈应力与接触压力的有限元分析   总被引:21,自引:8,他引:21  
利用大型有限元软件ANSYS对O形橡胶密封圈在不同压缩率和油压下的变形与受力情况进行了分析研究,得出了相应情况下范.米塞斯(Von M ises)应力分布及接触压力与最大接触压力的变化关系。结果表明:随着油压的增加,范.米塞斯(Von M ises)应力相应增加,且应力峰区也相应改变,说明O形圈可能出现裂纹的位置是随着油压而变化的;O形橡胶密封圈与轴之间的最大接触压力随着压缩率、油压的增加而增加,在不同油压作用下,最大接触压力始终大于油压,满足O形圈的密封条件。  相似文献   

14.
O形密封圈密封性能非线性有限元数值模拟   总被引:5,自引:1,他引:5  
利用ABAQUS软件建立海底采油设备用O形密封圈轴对称模型,对其在不同压缩率、不同油压时的Von Mi-ses应力及密封面接触压力分布规律进行探讨,确定O形密封圈材料易失效位置;分析压缩率和油压对O形密封圈最大Von Mises应力、最大接触压力及最大接触压与油压压差的影响。结果表明:O形密封圈最大Von Mises应力、密封面最大接触压力随压缩率和油压的增加而增加,且O形密封圈在中低高压下的密封能力高于超高下的密封能力,为海底采油设备用O形密封圈的结构设计及选型提供相关参考。  相似文献   

15.
为了分析低压铸造高温极端工况下O形密封圈的密封特性及密封失效问题,根据工况顺序,基于Mooney-Rivlin模型,采用ANSYS有限元分析了O形密封圈不同温度、压缩率、介质压力条件下的密封特性及密封失效位置.结果 表明:温度升高、压缩率减小、介质压力增大均使易破损位置向密封槽上过渡圆角处移动;当介质压力为2 MPa,...  相似文献   

16.
新型辅助密封圈的有限元分析   总被引:3,自引:1,他引:2  
利用非线性有限元理论建立了某新型辅助密封圈的有限元模型;利用有限元软件MSC.MARC分析了该结构在安装和使用过程中的接触变形、接触密封界面上的接触应力分布及摩擦特性等.结果表明,该密封结构辅助密封性能好,能够承受较高压力,并且与轴之间的摩擦阻力小,耐磨性能好,适用于旋转密封以及往复密封.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号