首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
采用4-PEPA(4-苯乙炔基苯酐)为封端剂,4,4′-ODA(4,4′-二氨基二苯醚)为胺源,通过控制s-BPDA(3,3′,4,4′-联苯四甲酸二酐)和α-BPDA(2,3,3′,4′-联苯四甲酸二酐)两种二酐单体的比例,合成了五种苯乙炔基封端的聚酰亚胺低聚物,对其化学结构、热性能及粘接性能进行了研究。研究结果表明:低聚物均具有较高的玻璃化转变温度(Tg),α-BPDA的引入减弱了分子链结晶倾向;当s-BPDA等时,常温剪切强度为15.3 MPa;而当两者用量比为67∶33时,高温剪切强度相对较高,同时保持了较好的耐热性能。  相似文献   

2.
以4,4’-二氨基二苯甲烷、苯酚和甲醛为原料合成二胺型苯并恶嗪(MDA–BOZ),并用其改性环氧树脂(EP)。采用湿法缠绕成型方法制备单向高强玻璃纤维(S–GF)增强改性EP基复合材料。用T–β外推法和凝胶化时间法确定了复合材料的成型工艺,并测试了其在室温和高温下的拉伸强度、弯曲强度、层间剪切强度等力学性能。与EP/4,4’–二氨基二苯砜(DDS)/S–GF复合材料相比,EP/MDA–BOZ/DDS/S–GF复合材料综合力学性能有较大提高。EP/MDA–BOZ/DDS/S–GF复合材料室温弯曲强度达1 428.3 MPa,层间剪切强度达79.92 MPa,纵向拉伸强度1 134.1 MPa,拉伸弹性模量为40.15 GPa。复合材料在100℃时,弯曲强度保持率为78.95%,层间剪切强度保持率为81.06%。扫描电子显微镜分析发现,改性树脂与玻璃纤维界面粘结性较好。  相似文献   

3.
以对氨基苯酚和二甲基二氯硅烷为原料,在四氢呋喃(THF)/甲苯混合溶剂中,采用一步法合成了二(p-氨基苯氧基)二甲基硅烷(p-APDS);然后以p-APDS和环氧树脂(EP)作为4,4′-双马来酰亚胺基二苯甲烷(BDM)的改性剂,对改性BDM的力学性能和热性能进行了分析。研究结果表明:p-APDS改性BDM的玻璃化转变温度(Tg)可达到226℃,比DDS(二氨基二苯基砜)改性BDM提高了20℃,说明前者的耐热性更好;p-APDS改性BDM浇铸体的韧性也得到了提高,其冲击强度为38.52 kJ/m2、弯曲强度为120.54 MPa。  相似文献   

4.
为解决传统树脂结合剂耐热性不高及与低熔点金属温度匹配性差的问题,以2,2′-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)和均苯四甲酸酐(PMDA)为单体,通过两步合成法制备聚酰亚胺树脂(PI),通过调控反应参数发现加料顺序为先胺后酐,反应时间6 h,单体PMDA与BAPP物质的量比为1.02∶1时,PI分子质量最佳,具有较好的力学性能(纯PI结合剂弯曲强度达95 MPa)和热稳定性(初始分解温度约510℃)。其与低熔点铜合金制备复合结合剂时,具有较好的成型温度匹配性和耐热性,当树脂体积分数为10%时,PI及聚酰胺酸复合结合剂的弯曲强度分别为532 MPa和540 MPa,综合性能较佳。  相似文献   

5.
采用自制的氨基小分子化合物(AHDU)改性二苯甲烷型双马来酰亚胺(BDM),得到室温下呈粘胶状的低软化点双马树脂。采用粘度计,流变仪,示差扫描量热分析,动态力学分析和热重分析等对树脂的性能进行了测试。结果表明,改性树脂70℃下的旋转粘度仅为760 m Pa·s,固化起始温度约155℃,兼具优良的加工性能和固化特性。树脂玻璃化转变温度高于330℃,热失重5%的温度高于410℃,耐热性良好。石英布增强改性双马复合材料的弯曲强度高于500 MPa,弯曲模量高于25 GPa,力学性能优良。  相似文献   

6.
以双酚A型环氧树脂E51为基体,苯并噁嗪树脂为改性剂,4,4-二氨基二苯甲烷为固化剂,并加入少量无机填料,制备了苯并噁嗪树脂改性环氧树脂胶黏剂,研究了其耐热性能与阻燃性能。结果表明:苯并噁嗪树脂改性的环氧树脂胶黏剂耐热性能和阻燃性能较好,在氮气气氛下质量损失10%时的温度由390.75℃提高到401.12℃,800℃时的残炭率为21.988%(w),175℃的拉伸剪切强度达到19.4 MPa,极限氧指数达到31.6%。  相似文献   

7.
以含硅多芳炔化合物(PSA)与1,3,5-三叠氮甲基-2,4,6-三甲基苯(TAMTMB)为原料,通过1,3-偶极环加成反应制备了新型含硅聚三唑树脂Si-PTA3,考察了树脂的流变性能、固化行为、热性能及单体配比对其热性能的影响。采用模压法制备了单向T700碳纤维增强的Si-PTA3树脂复合材料T700/Si-PTA3,测定了其力学性能。结果表明,Si-PTA3树脂具有良好的加工性能,可在80℃下固化,耐热性较好;炔基与叠氮基摩尔比为1.1:1.0时树脂固化物的热性能最好,玻璃化转变温度达334℃,在氮气中热失重5%时的温度达351℃;复合材料T700/Si-PTA3常温下的弯曲强度高于1670 MPa,250℃时弯曲强度保留率超过67%。  相似文献   

8.
采用双马来酰亚胺封端的硫醚酰亚胺低聚物对氰酸酯树脂进行了改性(SBMI),通过红外光谱对改性树脂(SBT)的结构作了表征,通过流变分析,热失重分析研究了其粘度特性及耐热性,并对其玻纤复合材料的力学性能进行了测试。结果表明,当SBMI质量分数为氰酸酯树脂的的37.5%时,SBT树脂的5%热失重温度为415℃,其复合材料在常温下的拉伸强度为438.8 MPa,弯曲强度为657.3 MPa,断裂伸长率为9.2%;200℃时拉伸强度为310.5 MPa,弯曲强度为307.4 MPa,断裂伸长率为12.5%。该树脂具有良好的加工性,耐热性和力学性能。  相似文献   

9.
以柔性二胺单体1,3-双(4-氨基苯氧基)苯(134BAPB)和含支链二胺单体3,3′-二乙基-4,4′-二氨基二苯甲烷(DEMMD)与3,3′,4,4′-二苯酮四酸二酐(BTDA)进行三元共聚,制备了一系列聚酰亚胺(PI)薄膜。通过傅里叶红外光谱、差示扫描量热仪、热重分析仪、热机械分析仪及电子万能材料试验机对材料的结构、热性能和力学性能进行了表征。结果表明PI薄膜已经成功制备,热性能与力学性能良好。  相似文献   

10.
双马来酰亚胺改性氰酸酯树脂及其复合材料   总被引:2,自引:0,他引:2  
制备了一种新型的双马来酰亚胺改性氰酸酯树脂以提高这类树脂的耐热性,力学性能及成型工艺性。对合成的树脂作了流变分析,对其玻纤复合材料进行了力学性能测试和热失重分析,结果表明,当双马树脂达到改性氰酸酯树脂的质量分数的37.5%时,新型改性氰酸酯树脂的5%热失重温度为432℃。改性氰酸酯基复合材料在常温条件下的拉伸强度为492.4 MPa,弯曲强度为526.3 MPa。在200℃时改性氰酸酯基复合材料的拉伸强度为357.3 MPa,弯曲强度为292.7 MPa。该树脂具有良好的加工性,耐热性,力学性能及高温力学保持性。  相似文献   

11.
使用PMR型聚酰亚胺预聚物溶液和三维碳纤维机织物预制件制作了三维机织物增强PMR型聚酰亚胺复合材料。通过对制备的PMR型聚酰亚胺预聚物的红外特征光谱(FT-IR)的分析和熔融流变性能的测试,设计优化了一种"两步浸渍热压法"制作三维机织物增强PMR型聚酰亚胺基复合材料,对复合材料的内部结构、热性能以及力学性能进行了表征与测试。  相似文献   

12.
任冬燕  任东兴  李芝华 《广州化工》2012,40(14):86-87,104
采用同步互穿聚合物网络技术制备了聚氨酯改性TDE-85/Me THPA环氧树脂体系,比较了环氧树脂TDE-85/MeTHPA固化体系改性前后力学性能和热稳定性的差异。研究结果表明,加入适量的由不同分子量聚醚二元醇合成的聚氨酯预聚体,对TDE-85/MeTHPA固化体系的力学性能、热稳定性均有所增加;当聚醚二元醇分子量为1000,且合成的聚氨酯预聚体加入量为15%时,同未改性的固化体系相比,该改性体系的拉伸强度和冲击强度分别上升48.0%和115%,分别达到69.39 MPa和23.56 kJ/m2,同时,该改性材料的热稳定性也有较明显的提高,其失重1%的温度T1%为300℃,比未改性的固化体系失重1%的温度高了30℃。  相似文献   

13.
采用顺酐和二醇制得耐腐蚀不饱和树脂,再将其与由三羟甲基丙烷二烯丙基醚(TMPDE)、TDI和苯乙烯反应得到的含有气干性基团的预聚物接枝聚合得到气干性耐腐蚀不饱和树脂。研究了预聚物加入量对树脂气干性以及接枝聚合反应温度和时间对反应程度的影响,并测试了产品的耐腐性和力学性能。结果表明,自制的耐腐蚀不饱和树脂、TDI、TMPDE及苯乙烯的质量配比为10∶1∶1∶2,聚合反应温度75~85℃,反应时间2.0 h时得到的不饱和树脂性能最佳,无缺口冲击强度为7.56 kJ/m2,弯曲强度为71.7 MPa,弯曲模量为3.21 GPa,热变形温度为110℃,产品可耐强酸、强碱、强氧化介质的长期腐蚀,气干性好,固化优良。  相似文献   

14.
采用有机硅改性剂通过共混法改性了热固性酚醛树脂。通过红外,热重分析以及力学性能测试研究了有机硅用量对酚醛树脂热性能和力学性能的影响。结果表明:加入的有机硅改性剂的质量分数为25%时,酚醛树脂的主体结构分解温度提高了36℃,分解速率降低了21%,最终残炭率增加了10.05%,并且拉伸强度由49.68 MPa提高到77.46 MPa,冲击强度由8.3 kJ/m2提高到11.89 kJ/m2。  相似文献   

15.
通过GPC和IR表征了反应温度和反应时间对热固性酚醛树脂分子质量、分子质量分布和分子结构的影响,研究了几种不同分子质量分布树脂的力学性能与热性能。结果表明:树脂的分子质量分布和结构不同对性能影响很大。当树脂的分子质量分布中三、四聚体以上(含十到二十聚体)级份占70%,有少量(少于3%)的超高分子质量级份时,树脂的强度达到最大值2.05 MPa,耐热性也相对较好。  相似文献   

16.
In this paper, a series of two-component polyurethane resins were prepared by using polymethylene polyphenyl isocyanate (PMDI) and polypropylene glycol (PPG400) respectively as hard and soft segment. In order to further increase strength, stiffness and heat resistance of resin system, phthalic anhydride polyester polyol (PAPP) was used as second soft segment. The effects of content, functionality and molecular weight of PAPP on mechanical properties of PMDI-PPG resins were mainly studied. The results indicated comprehensive performance of polyurethane resin was best in the case of employing tri-functionality PAPP with a molecular weight of 400 and 40% content in soft segment. The resulting tensile, flexural and impact strength of polyurethane respectively reached 66.4, 92.0 MPa and 66.1kJ/m2. The tensile and flexural strength of glass fibre-reinforced polyurethane composite respectively reached 465 and 552?MPa. PMDI-PPG/PAPP system thus is expected as a new type of resin matrix used for high-performance polymer composites.  相似文献   

17.
用熔融预聚法对二苯甲烷双马来酰亚胺(BDM,即BMI)/二烯丙基双酚A(DABPA)和双酚A二氰酸酯(BCE)/溴化环氧树脂(BCE)各二元体系分别预聚再热混,制成溶解性、稳定性和反应性、粘接性好的多元共聚树脂。经阶梯式固化,并通过FTIR、DSC、DMA、TGA和SEM等手段测试了固化树脂的性能。结果表明,该树脂的玻璃化温度(Tg)为230.7℃,耐热指数(Z)为197℃,热膨胀系数(CTE)为7.0104×10-5/℃,介电常数ε为3.61,介电损耗tanδ(1MHz)为0.007,弯曲强度为131.83MPa,冲击强度25.0kJ/m2,氧指数为31,吸水率为0.44%。此耐热性、介电性能和力学性能等综合性能优异的阻燃型树脂适合做刚性覆铜板(CCL)和先进复合材料的高性能基体树脂。  相似文献   

18.
以含支链3,3′-二乙基-4,4′-二氨基二苯甲烷(M-OEA)为二胺单体,采用高温一步法与四种二酐进行聚合,合成了四种聚酰亚胺(PI)树脂,并制备了一系列聚酰亚胺薄膜。对聚酰亚胺树脂进行了溶解性测试,并通过傅里叶红外光谱、紫外-可见分光光度计、差示扫描量热仪、热重分析仪、静态热机械分析仪及电子万能材料试验机对PI薄膜的结构、光学性能、热性能和力学性能进行了表征。结果表明,该系列树脂溶解性优异,薄膜热稳定性良好,5%热失重温度(Td5)均在390℃以上,玻璃化转变温度(Tg)均高于230℃,两种半脂环族PI薄膜的光学性能优异,紫外截止波长280 nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号