首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
整体立铣刀后刀面通常采用数控工具磨床按照理想砂轮形状的运动轨迹进行磨削加工,然而在实际磨削过程中,砂轮参与磨削的区域(主要是砂轮边缘轮廓)会逐渐磨损,从而导致后刀面几何精度下降甚至轮廓错误.针对该问题,本文提出了基于砂轮磨损参数的整体立铣刀后刀面磨削轨迹补偿算法.首先,针对立铣刀后刀面磨削工艺,定义了磨削坐标系,推导了...  相似文献   

2.
提出了一种基于五轴数控磨床的球头立铣刀后刀面加工算法.为获得高精度后刀面加工算法,首先要对球头立铣刀进行数学建模,将各个加工部位参数化.每一个加工部位都可以建立各自的局部坐标系,依据数学模型得到砂轮和棒料在此局部坐标系中的相对位置和局部坐标,据此局部坐标计算得出加工所需要的NC代码.在上机加工之前对NC代码进行三维OpenGL仿真,算法就可以得到有效检验.  相似文献   

3.
黄英佑 《机械》1990,17(6):27-29
通常圆弧车刀的前刀面是平面型,其后刀面形面的正确磨削是刃磨的关键。为此就要求砂轮的工作曲面形状与车刀后刀面法剖面的椭圆曲线相吻合,而对砂轮进行正确的修形。对于圆弧刃半径R≤20毫米的车刀可采用投影法将砂轮修整成轴向截形为椭圆曲线的成形砂轮前进磨削,当车刀圆弧刃半径R>20毫米时,由于受盘型砂轮厚度的限制,采用上述方法较为困难。本文介绍利用万能工具磨床的可调性,根据车刀和砂轮磨削状态的相对位置关系,对圆弧车刀后刀面进行刃磨的方法。  相似文献   

4.
针对圆弧头立铣刀周刃偏心型后刀面的磨削工艺、周刃与端刃后刀面磨削姿态变化剧烈导致磨削质量不高等问题,研究了一种采用平行砂轮磨削的圆弧头立铣刀后刀面轨迹算法。首先建立参数化设计的圆弧头刀刃曲线模型,并根据其模型定义了一系列活动坐标系及其转换关系。然后在其对应的坐标系下定义砂轮磨削姿态模型和相关参数,且通过其转换关系得到在工件坐标系下统一表达。最后进行仿真和实际加工来验证计算结果,并用检测仪对后刀面相关参数进行精度测量,验证了该算法的正确性和有效性。  相似文献   

5.
针对圆弧立铣刀磨削中周齿前刀面与端齿前刀面的过渡问题,提出磨削圆弧刃前刀面的砂轮轨迹算法,以此实现周齿与端齿前刀面的光滑连接.定义了一种切深磨削点轨迹曲线,可以同时约束圆弧前刀面的宽度和前角;定义了圆弧刃在平面中的瞬时前刀面,计算在瞬时前刀面中的砂轮磨削轨迹和姿态,再经过空间坐标变换,得出砂轮实际加工轨迹.通过C++将算法编写为相应程序,进行仿真和实际加工验证,所得验证结果证明了该方法的正确性和可行性.  相似文献   

6.
基于自主研制的嵌入式六轴数控工具磨削系统,提出了磨削铣刀球刃的六轴联动数控模型.通过分析磨削点的六坐标之间的位置关系,设计出球刃前刀面磨削的椭圆形轨迹.回转磨削砂轮使其有效磨削截面投影成椭圆形廓,控制六轴联动包络出工件上的椭圆轨迹.提出并证明了椭圆在不同方向上投影时相对应的象限内离心角关系定理,并据之进一步推导出砂轮与球刃工件之间的六轴运动坐标之间的相对位置关系的控制模型.实际磨削测试表明,该模型能有效地实现球刃铣刀的精密磨削加工控制.  相似文献   

7.
针对双端面磨削中高精度与高效率难以同时实现的问题,以上砂轮磨削面形貌为研究对象,建立了修整后的上砂轮磨削面坐标方程,分析了工件磨除量在磨削区内的分布。分别建立了下砂轮坐标系、修整坐标系和上砂轮坐标系,通过空间几何坐标变换和MATLAB软件仿真,绘制了上砂轮磨削面的Z向坐标沿砂轮半径方向的变化曲线、上砂轮磨削面内任意点到下砂轮磨削面的距离随工件转角的变化曲线,分析了上砂轮磨削面的不同形貌对双端面磨削加工精度及精度保持性的影响。实验结果与计算分析吻合,验证了计算分析的正确性。  相似文献   

8.
定义了断屑钻尖后刀面的结构参数,构建了三个坐标系并分析了对应的转换矩阵;建立了断屑钻尖刃线及后刀面参数化数学模型;采用坐标变换矩阵描述了砂轮的运动方式,借助运动学原理,在数控磨削过程中提出了基于工件坐标系的断屑钻尖后刀面砂轮磨削位姿算法。基于VC++环境,开发了相应的计算程序并进行了一系列的磨削加工和测试来验证所提算法的有效性。测量结果表明:所提算法可保证断屑钻尖后刀面的结构精度,并可灵活调整磨削过程中砂轮姿态。  相似文献   

9.
通过实例的磨削加工,阐述机床数控改造的设计,以及在设计中的参数转换.实现超大半径弧面零件的数控磨削;应用数控技术,实现对砂轮磨损的瞬时自动补偿.  相似文献   

10.
硬质合金刀具被广泛应用于航空航天、汽车、冶金等高端制造领域。硬质合金刀具的生产通常采用金刚石砂轮磨削加工,因此,砂轮的磨削工艺参数对刀具的成品质量有重要影响。本试验通过改变砂轮的线速度及进给速度加工硬质合金麻花钻,加工完成后,采用超景深显微镜、白光干涉仪和扫描电镜对钻头的磨削表面以及亚表面进行检测,分析砂轮进给速度及线速度对加工损伤的影响。结果表明:砂轮进给速度和线速度越大,锯齿量越大;当线速度与进给速度较小时,钻头的主切削刃易出现微崩刃现象;砂轮进给速度越大,钻头后刀面表面粗糙度越大;砂轮线速度越大,钻头后刀面表面粗糙度越小;钻头后刀面处的亚表面最大损伤深度随线速度的增大而减小;当线速度30m/s、进给速度160mm/min时,钻头的磨削损伤最小。  相似文献   

11.
为了提高面齿轮的磨齿效率,采用不做齿向进给运动的大半径盘形砂轮磨齿得到的面齿轮具有近似齿面,然而该近似面齿轮与双向修形小轮的啮合性能不够理想.因此进一步通过啮合理论重新构造小轮齿面,并根据预设的啮合性能对该新构造的小轮齿面进行拓扑修形设计,以控制近似面齿轮传动的啮合性能.小轮的拓扑修形齿面采用盘形砂轮局部点共轭法磨齿加工,建立了小轮拓扑修形齿面与加工参数之间的线性方程.用实例说明了所提方法的应用,齿面接触分析结果与给定的啮合性能基本一致.  相似文献   

12.
提出了标准麻花钻内锥面刃磨法的建模方法,在分析麻花钻几何结构的基础上,确定了麻花钻后刀面和钻尖后角的计算公式,并利用MATLAB软件分析了其变化规律以及各刃磨参数对麻花钻后角的影响。  相似文献   

13.
对角修形斜齿轮设计与数控磨齿研究   总被引:2,自引:1,他引:2  
为了减小齿面振动,降低磨削误差,提出对角修形斜齿轮数控磨齿加工方法:通过设计对角修形曲线,经过3次B样条拟合为对角修形曲面;根据齿条展成渐开线齿面原理,建立平面砂轮磨削斜齿轮6轴联动Free-Form型数控磨齿模型,通过齿条与砂轮位矢等效转换,推导各轴运动关系;建立基于CNC机床各轴运动敏感性分析的齿面修正模型,各轴运动用6阶多项式表示,通过判断砂轮与齿面的接触状态,确定磨削齿面的误差,并分析各系数扰动对齿面误差的影响;以齿面误差平方和最小为目标函数,通过粒子群优化方法,得到机床各轴运动参数,该方法计算结果稳定且精度较高。通过算例表明:沿齿向方向压力角、螺旋角、展成角的微调可分别实现一定的对角修形加工;微调6轴联动机床各轴运动参数,可有效减小对角修形斜齿轮的磨削误差,通过机床运动敏感性分析验证理论和算法的正确性。  相似文献   

14.
苏龙  何宁 《工具技术》2012,46(7):31-33
提出了标准麻花钻内锥面刃磨法的建模方法,在分析麻花钻几何结构的基础上确定了麻花钻后刀面和钻尖后角的计算公式,并利用Matlab软件分析了其变化规律以及各刃磨参数对麻花钻后角的影响。  相似文献   

15.
本文对非渐开线插齿刀侧齿面的逼近加工进行了分析和研究,提出了用展成磨齿法加工非渐开线插齿刀侧齿面的计算方法,并对砂轮轴截面形状的逼近误差进行了计算。  相似文献   

16.
本文从成形拉刀铲磨后面时砂轮截形修正出发,导出了在生产中简单实用的空间坐标法修正计算的主要公式。该计算方法对类似刀具的制造,有一定的参考价值。  相似文献   

17.
基于电镀小直径端面CBN砂轮磨削沟槽的试验结果,为减小沟槽底面与侧面过渡圆弧半径,开发了一种新型小直径端面CBN砂轮,在试验研究其磨削性能的基础上提出了改善措施,取得了良好的磨削效果。新型端面CBN砂轮加工沟槽的过渡圆弧半径达到0.2mm以下,比电镀CBN砂轮减小60%以上。新型端面CBN砂轮磨削过程中,由于有效CBN磨粒发生的后面磨损及其破碎,使磨粒切削刃凸出高度降低,而砂轮表面所有CBN磨粒均先后依次成为有效磨粒,因此提高单个CBN磨粒的耐磨性和韧性,减小破碎,是提高新型CBN砂轮寿命的有效措施。选用多晶强韧的CBN磨粒(通用电器GE550型产品)使砂轮寿命提高到了原来的6.75倍。  相似文献   

18.
微细钻头的几何结构是影响刀具钻削性能和微孔加工质量的关键因素。非共轴螺旋面钻尖由连续的螺旋后刀面组成,相比平面钻尖能有效的提高刀具的刃磨效率及其钻削性能。针对非共轴螺旋面钻尖,推导后刀面形成过程中螺旋运动发生线的位置方程,建立了基于砂轮和钻头接触线的后刀面数学模型。根据六轴数控工具磨床的运动原理,提出非共轴螺旋后刀面五轴联动刃磨方法。分析砂轮与螺旋槽之间的相对运动关系,提出微细钻头螺旋槽的数控加工方法。进行非共轴螺旋后刀面微钻的刃磨试验,验证了该刃磨方法的可行性。进而采用制备出的具有相同几何结构参数的平面、锥面和非共轴螺旋面微细钻头进行不锈钢钻削试验,结果表明非共轴螺旋面和锥面微钻的钻削力、后刀面磨损明显小于平面微钻,并且非共轴螺旋后刀面微钻的横刃磨损程度小于平面和锥面微钻。研究证实了所提出的五轴联动刃磨方法可以有效地制备出较高钻削性能的非共轴螺旋后刀面微细钻头。  相似文献   

19.
A systematic machining theory and precision method to determine cutter location in a grinding system is presented for rotary burr. First, the helical cutting edge on various kinds of revolving surfaces is built. Then, based on the geometry model of the helical cutting edge, the smooth spiral rake surface with constant normal rake angle and flank surface can been formed during the one-pass grinding process by this method. No interference between the grinding wheel and workpiece happens by the wheel special rotation. The method has the characteristic of detaching the grinding wheel path solution from specified machining conditions. The grinding wheel path is suitable for different NC machine tools through post processing. Meanwhile, a mechanism kinematic model of the NC machine tool is built, and a generalized algorithm for post-processing of multi-axis NC machine tools is presented. This model is applied to arbitrary configuration of NC machine tool, and the motion value for each axis will be generated by the inputting structure and motion parameters of the machine tool. The model, together with the machining method mentioned in this paper, make the calculation and generation of the grinding wheel path simpler and universal. At last, the validity of the method given in the paper is identified by an example of grinding.  相似文献   

20.
A grinding method for the major flank face of error-free spur slice cutter is proposed according to urgent demand for the slice cutter in practical production. The geometrical characteristic of the major flank face is analyzed based on the surface Gaussian curvature. On this basis, the grinding motion model based on B-type CNC five-axis tool grinding machine is built. The grinding point path planning method according to the accuracy requirement of the major flank face is proposed. The interference checking and avoiding method is also found. The major flank face of a slice cutter is grinded based on the above study result. As a result, the machining error of the major flank face is less than 0.01 mm and the surface roughness is Ra0.3. This result meets the accuracy requirement that the machining error and surface roughness of the major flank face need to be respectively less than 0.01 mm and Ra0.4. The machining example shows that the study result in this paper is valid for the major flank face grinding. This paper provides a technical support for the manufacturing of error-free spur slice cutter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号