首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specification language Csp-Casl allows one to model processes as well as data of distributed systems within one framework. In our paper, we describe how a combination of the existing tools Hets and Csp-Prover can solve the challenges that Csp-Casl raises on integrated theorem proving for processes and data. For building this new tool, the automated generation of theorems and their proofs in Isabelle/HOL plays a fundamental role. A case study of industrial strength demonstrates that our approach scales up to complex problems.  相似文献   

2.
The inversion of schema mappings has been identified as one of the fundamental operators for the development of a general framework for metadata management. During the last few years, three alternative notions of inversion for schema mappings have been proposed (Fagin-inverse (Fagin, TODS 32(4), 25:1–25:53, 2007), quasi-inverse (Fagin et?al., TODS 33(2), 11:1–11:52, 2008), and maximum recovery (Arenas et?al., TODS 34(4), 22:1–22:48, 2009)). However, these notions lack some fundamental properties that limit their practical applicability: most of them are expressed in languages including features that are difficult to use in practice, some of these inverses are not guaranteed to exist for mappings specified with source-to-target tuple-generating dependencies (st-tgds), and it has been futile to search for a meaningful mapping language that is closed under any of these notions of inverse. In this paper, we develop a framework for the inversion of schema mappings that fulfills all of the above requirements. It is based on the notion of ${\mathcal{C}}$ -maximum recovery, for a query language ${\mathcal{C}}$ , a notion designed to generate inverse mappings that recover back only the information that can be retrieved with queries in ${\mathcal{C}}$ . By focusing on the language of conjunctive queries (CQ), we are able to find a mapping language that contains the class of st-tgds, is closed under CQ-maximum recovery, and for which the chase procedure can be used to exchange data efficiently. Furthermore, we show that our choices of inverse notion and mapping language are optimal, in the sense that choosing a more expressive inverse operator or mapping language causes the loss of these properties.  相似文献   

3.
The Mono Model Checker (mmc) is a software model checker for cil bytecode programs. mmc has been developed on the Mono platform. mmc is able to detect deadlocks and assertion violations in cil programs. The design of mmc is inspired by the Java PathFinder (jpf), a model checker for Java programs. The performance of mmc is comparable to jpf. This paper introduces mmc and presents its main architectural characteristics.  相似文献   

4.
We study the problem of answering k -hop reachability queries in a directed graph, i.e., whether there exists a directed path of length $k$ , from a source query vertex to a target query vertex in the input graph. The problem of $k$ -hop reachability is a general problem of the classic reachability (where $k=\infty $ ). Existing indexes for processing classic reachability queries, as well as for processing shortest path distance queries, are not applicable or not efficient for processing $k$ -hop reachability queries. We propose an efficient index for processing $k$ -hop reachability queries. Our experimental results on a wide range of real datasets show that our method is efficient and scalable in terms of both index construction and query processing.  相似文献   

5.
Continuous visible nearest neighbor query processing in spatial databases   总被引:1,自引:0,他引:1  
In this paper, we identify and solve a new type of spatial queries, called continuous visible nearest neighbor (CVNN) search. Given a data set P, an obstacle set O, and a query line segment q in a two-dimensional space, a CVNN query returns a set of \({\langle p, R\rangle}\) tuples such that \({p \in P}\) is the nearest neighbor to every point r along the interval \({R \subseteq q}\) as well as p is visible to r. Note that p may be NULL, meaning that all points in P are invisible to all points in R due to the obstruction of some obstacles in O. In contrast to existing continuous nearest neighbor query, CVNN retrieval considers the impact of obstacles on visibility between objects, which is ignored by most of spatial queries. We formulate the problem, analyze its unique characteristics, and develop efficient algorithms for exact CVNN query processing. Our methods (1) utilize conventional data-partitioning indices (e.g., R-trees) on both P and O, (2) tackle the CVNN search by performing a single query for the entire query line segment, and (3) only access the data points and obstacles relevant to the final query result by employing a suite of effective pruning heuristics. In addition, several interesting variations of CVNN queries have been introduced, and they can be supported by our techniques, which further demonstrates the flexibility of the proposed algorithms. A comprehensive experimental evaluation using both real and synthetic data sets has been conducted to verify the effectiveness of our proposed pruning heuristics and the performance of our proposed algorithms.  相似文献   

6.
We introduce a rewrite-based specification language for modelling probabilistic concurrent and distributed systems. The language, based on PMaude, has both a rigorous formal basis and the characteristics of a high-level rule-based programming language. Furthermore, we provide tool support for performing discrete-event simulations of models written in PMaude, and for statistically analyzing various quantitative aspects of such models based on the samples that are generated through discrete-event simulation. Because distributed and concurrent communication protocols can be modelled using actors (concurrent objects with asynchronous message passing), we provide an actor PMaude module. The module aids writing specifications in a probabilistic actor formalism. This allows us to easily write specifications that are purely probabilistic – and not just non-deterministic. The absence of such (un-quantified) non-determinism in a probabilistic system is necessary for a form of statistical analysis that we also discuss. Specifically, we introduce a query language called Quantitative Temporal Expressions (or QuaTEx in short), to query various quantitative aspects of a probabilistic model. We also describe a statistical technique to evaluate QuaTEx expressions for a probabilistic model.  相似文献   

7.
An instance of the maximum constraint satisfaction problem (Max CSP) is a finite collection of constraints on a set of variables, and the goal is to assign values to the variables that maximises the number of satisfied constraints. Max CSP captures many well-known problems (such as Maxk-SAT and Max Cut) and is consequently NP-hard. Thus, it is natural to study how restrictions on the allowed constraint types (or constraint language) affect the complexity and approximability of Max CSP. The PCP theorem is equivalent to the existence of a constraint language for which Max CSP has a hard gap at location 1; i.e. it is NP-hard to distinguish between satisfiable instances and instances where at most some constant fraction of the constraints are satisfiable. All constraint languages, for which the CSP problem (i.e., the problem of deciding whether all constraints can be satisfied) is currently known to be NP-hard, have a certain algebraic property. We prove that any constraint language with this algebraic property makes Max CSP have a hard gap at location 1 which, in particular, implies that such problems cannot have a PTAS unless P=NP. We then apply this result to Max CSP restricted to a single constraint type; this class of problems contains, for instance, Max Cut and Max DiCut. Assuming PNP, we show that such problems do not admit PTAS except in some trivial cases. Our results hold even if the number of occurrences of each variable is bounded by a constant. Finally, we give some applications of our results.  相似文献   

8.
In the era of bigdata, with a massive set of digital information of unprecedented volumes being collected and/or produced in several application domains, it becomes more and more difficult to manage and query large data repositories. In the framework of the PetaSky project (http://com.isima.fr/Petasky), we focus on the problem of managing scientific data in the field of cosmology. The data we consider are those of the LSST project (http://www.lsst.org/). The overall size of the database that will be produced is expected to exceed 60 PB (Lsst data challenge handbook, 2012). In order to evaluate the performances of existing SQL On MapReduce data management systems, we conducted extensive experiments by using data and queries from the area of cosmology. The goal of this work is to report on the ability of such systems to support large scale declarative queries. We mainly investigated the impact of data partitioning, indexing and compression on query execution performances.  相似文献   

9.
Despite a large body of work on XPath query processing in relational environment, systematic study of queries containing not-predicates have received little attention in the literature. Particularly, several xml supports of industrial-strength commercial rdbms fail to efficiently evaluate such queries. In this paper, we present an efficient and novel strategy to evaluate not -twig queries in a tree-unaware relational environment. not -twig queries are XPath queries with ancestor–descendant and parent–child axis and contain one or more not-predicates. We propose a novel Dewey-based encoding scheme called Andes (ANcestor Dewey-based Encoding Scheme), which enables us to efficiently filter out elements satisfying a not-predicate by comparing their ancestor group identifiers. In this approach, a set of elements under the same common ancestor at a specific level in the xml tree is assigned same ancestor group identifier. Based on this scheme, we propose a novel sql translation algorithm for not-twig query evaluation. Experiments carried out confirm that our proposed approach built on top of an off-the-shelf commercial rdbms significantly outperforms state-of-the-art relational and native approaches. We also explore the query plans selected by a commercial relational optimizer to evaluate our translated queries in different input cardinality. Such exploration further validates the performance benefits of Andes.  相似文献   

10.
Wireless sensor networks (WSN) is a key enabling technique for achieving the vision of the Internet of Things. In many applications of WSN such as environmental monitoring and vehicle tracking, they may require to launch spatial queries for collecting and gathering sensory data for achieving certain goals. One such query is the \(K\) nearest neighbor (KNN) query, which aims to collect sensory data from \(k\) sensor nodes nearest to a certain query location. Techniques, namely the itinerary-based KNN query algorithms, are recently developed for facilitating KNN queries. Generally, these techniques propagate queries and collect data along a predetermined itinerary. However, query accuracy and boundary expansion are two challenges that are not well addressed. To mitigate these issues, in this paper, we propose a novel KNN query algorithm based on grid division routing in the setting of skewness distribution, where the itinerary is formed based on the connectivity of adjacent grid cells centers. This technique can achieve better query accuracy and cause less energy consumption by executing the query concurrently in subregions. Besides, the void region problem is well addressed based on the proximity of neighbor grid cells. Experiment result shows that our technique performs better in several aspects including query accuracy, data redundancy, and energy efficiency.  相似文献   

11.
We introduce CoCasl as a light-weight but expressive coalgebraic extension of the algebraic specification language Casl. CoCasl allows the nested combination of algebraic datatypes and coalgebraic process types. Moreover, it provides syntactic sugar for an observer-indexed modal logic that allows e.g. expressing fairness properties. This logic includes a generic definition of modal operators for observers with structured equational result types. We prove existence of final models for specifications in a format that allows the use of equationally specified initial datatypes as observations, as well as modal axioms. The use of CoCasl is illustrated by specifications of the process algebras CSP and CCS.  相似文献   

12.
Given a road network G = (V,E), where V (E) denotes the set of vertices(edges) in G, a set of points of interest P and a query point q residing in G, the reverse furthest neighbors (Rfn R ) query in road networks fetches a set of points pP that take q as their furthest neighbor compared with all points in P ∪ {q}. This is the monochromatic Rfn R (Mrfn R ) query. Another interesting version of Rfn R query is the bichromatic reverse furthest neighbor (Brfn R ) query. Given two sets of points P and Q, and a query point qQ, a Brfn R query fetches a set of points pP that take q as their furthest neighbor compared with all points in Q. This paper presents efficient algorithms for both Mrfn R and Brfn R queries, which utilize landmarks and partitioning-based techniques. Experiments on real datasets confirm the efficiency and scalability of proposed algorithms.  相似文献   

13.
A mode of a multiset S is an element aS of maximum multiplicity; that is, a occurs at least as frequently as any other element in S. Given an array A[1:n] of n elements, we consider a basic problem: constructing a static data structure that efficiently answers range mode queries on A. Each query consists of an input pair of indices (i,j) for which a mode of A[i:j] must be returned. The best previous data structure with linear space, by Krizanc, Morin, and Smid (Proceedings of the International Symposium on Algorithms and Computation (ISAAC), pp. 517–526, 2003), requires \(\varTheta (\sqrt{n}\log\log n)\) query time in the worst case. We improve their result and present an O(n)-space data structure that supports range mode queries in \(O(\sqrt{n/\log n})\) worst-case time. In the external memory model, we give a linear-space data structure that requires \(O(\sqrt{n/B})\) I/Os per query, where B denotes the block size. Furthermore, we present strong evidence that a query time significantly below \(\sqrt{n}\) cannot be achieved by purely combinatorial techniques; we show that boolean matrix multiplication of two \(\sqrt{n} \times \sqrt{n}\) matrices reduces to n range mode queries in an array of size O(n). Additionally, we give linear-space data structures for the dynamic problem (queries and updates in near O(n 3/4) time), for orthogonal range mode in d dimensions (queries in near O(n 1?1/2d ) time) and for half-space range mode in d dimensions (queries in \(O(n^{1-1/d^{2}})\) time). Finally, we complement our dynamic data structure with a reduction from the multiphase problem, again supporting that we cannot hope for much more efficient data structures.  相似文献   

14.
Safe Ambients (SA) are a variant of the Ambient Calculus (AC) in which types can be used to avoid certain forms of interferences among processes called grave interferences.An abstract machine, called GcPan, for a distributed implementation of typed SA is presented and studied. Our machine improves over previous proposals for executing AC, or variants of it, mainly through a better management of special agents (the forwarders), created upon code migration to transmit messages to the target location of the migration. Well-known methods (such as reference counting and union-find) are applied in order to garbage collect forwarders, thus avoiding long – possibly distributed – chains of forwarders, as well as avoiding useless persistent forwarders.We present the proof of correctness of GcPan w.r.t. typed SA processes. We describe a distributed implementation of the abstract machine in OCaml.More broadly, this study is a contribution towards understanding issues of correctness and optimisations in implementations of distributed languages encompassing mobility.  相似文献   

15.
Optimal location (OL) queries are a type of spatial queries that are particularly useful for the strategic planning of resources. Given a set of existing facilities and a set of clients, an OL query asks for a location to build a new facility that optimizes a certain cost metric (defined based on the distances between the clients and the facilities). Several techniques have been proposed to address OL queries, assuming that all clients and facilities reside in an \(L_p\) space. In practice, however, movements between spatial locations are usually confined by the underlying road network, and hence, the actual distance between two locations can differ significantly from their \(L_p\) distance. Motivated by the deficiency of the existing techniques, this paper presents a comprehensive study on OL queries in road networks. We propose a unified framework that addresses three variants of OL queries that find important applications in practice, and we instantiate the framework with several novel query processing algorithms. We further extend our framework to efficiently monitor the OLs when locations for facilities and/or clients have been updated. Our dynamic update methods lead to efficient answering of continuous optimal location queries. We demonstrate the efficiency of our solutions through extensive experiments with large real data.  相似文献   

16.
Search engine users often encounter the difficulty of phrasing the precise query that could lead to satisfactory search results. Query recommendation is considered an effective assistant in enhancing keyword-based queries in search engines and Web search software. In this paper, we present a Query-URL Bipartite based query reCommendation approach, called QUBiC. It utilizes the connectivity of a query-URL bipartite graph to recommend related queries and can significantly improve the accuracy and effectiveness of personalized query recommendation systems comparing with the conventional pairwise similarity based approach. The main contribution of the QUBiC approach is its three-phase framework for personalized query recommendations. The first phase is the preparation of queries and their search results returned by a search engine, which generates a historical query-URL bipartite collection. The second phase is the discovery of similar queries by extracting a query affinity graph from the bipartite graph, instead of operating on the original bipartite graph directly using biclique-based approach or graph clustering. The query affinity graph consists of only queries as its vertices and its edges are weighted according to a query-URL vector based similarity (dissimilarity) measure. The third phase is the ranking of similar queries. We devise a novel rank mechanism for ordering the related queries based on the merging distances of a hierarchical agglomerative clustering (HAC). By utilizing the query affinity graph and the HAC-based ranking, we are able to capture the propagation of similarity from query to query by inducing an implicit topical relatedness between queries. Furthermore, the flexibility of the HAC strategy makes it possible for users to interactively participate in the query recommendation process, and helps to bridge the gap between the determinacy of actual similarity values and the indeterminacy of users’ information needs, allowing the lists of related queries to be changed from user to user and query to query, thus adaptively recommending related queries on demand. Our experimental evaluation results show that the QUBiC approach is highly efficient and more effective compared to the conventional query recommendation systems, yielding about 13.3 % as the most improvement in terms of precision.  相似文献   

17.
This paper considers QLtl, a quantitative analagon of Ltl and presents algorithms for model checking QLtl over quantitative versions of Kripke structures and Markov chains.  相似文献   

18.
Four enantioselective, potentiometric membrane electrodes based on carbon paste impregnated with α-, β-, 2-hydroxyl-3-trimethylammoniopropyl-β-(as chloride salt) and γ-cyclodextrins (γ-CDs) are proposed for the assay of l-histidine (l-his). The proposed electrodes showed near-Nernstian response over l-his but not over d-histidine (d-his). The recovery of l-his in the presence of d-his was higher than 99.10% with R.S.D. lower than 0.1%. The surfaces of the electrodes are easily renewable by simply polishing on an alumina paper.  相似文献   

19.
We introduce a predictive modeling solution that provides high quality predictive analytics over aggregation queries in Big Data environments. Our predictive methodology is generally applicable in environments in which large-scale data owners may or may not restrict access to their data and allow only aggregation operators like COUNT to be executed over their data. In this context, our methodology is based on historical queries and their answers to accurately predict ad-hoc queries’ answers. We focus on the widely used set-cardinality, i.e., COUNT, aggregation query, as COUNT is a fundamental operator for both internal data system optimizations and for aggregation-oriented data exploration and predictive analytics. We contribute a novel, query-driven Machine Learning (ML) model whose goals are to: (i) learn the query-answer space from past issued queries, (ii) associate the query space with local linear regression & associative function estimators, (iii) define query similarity, and (iv) predict the cardinality of the answer set of unseen incoming queries, referred to the Set Cardinality Prediction (SCP) problem. Our ML model incorporates incremental ML algorithms for ensuring high quality prediction results. The significance of contribution lies in that it (i) is the only query-driven solution applicable over general Big Data environments, which include restricted-access data, (ii) offers incremental learning adjusted for arriving ad-hoc queries, which is well suited for query-driven data exploration, and (iii) offers a performance (in terms of scalability, SCP accuracy, processing time, and memory requirements) that is superior to data-centric approaches. We provide a comprehensive performance evaluation of our model evaluating its sensitivity, scalability and efficiency for quality predictive analytics. In addition, we report on the development and incorporation of our ML model in Spark showing its superior performance compared to the Spark’s COUNT method.  相似文献   

20.
Recent years have witnessed the development of large knowledge bases (KBs). Due to the lack of information about the content and schema semantics of KBs, users are often not able to correctly formulate KB queries that return the intended result. In this paper, we consider the problem of failing RDF queries, i.e., queries that return an empty set of answers. Query relaxation is one cooperative technique proposed to solve this problem. In the context of RDF data, several works proposed query relaxation operators and ranking models for relaxed queries. But none of them tried to find the causes of an RDF query failure given by Minimal Failing Subqueries (MFSs) as well as successful queries that have a maximal number of triple patterns named Ma \(\underline{x}\) imal Succeeding Subqueries (XSSs). Inspired by previous work in the context of relational databases and recommender systems, we propose two complementary approaches to fill this gap. The lattice-based approach (LBA) leverages the theoretical properties of MFSs and XSSs to efficiently explore the subquery lattice of the failing query. The matrix-based approach computes a matrix that records alternative answers to the failing query with the triple patterns they satisfy. The skyline of this matrix directly gives the XSSs of the failing query. This matrix can also be used as an index to improve the performance of LBA. The practical interest of these two approaches are shown via a set of experiments conducted on the LUBM benchmark and a comparative study with baseline and related work algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号