首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carboxymethyl sago pulp (CMSP)/pectin hydrogel beads were synthesized by calcium crosslinking and further crosslinked by electron beam irradiation to form drug carrier for colon‐targeted drug. Sphere‐shaped CMSP/pectin 15%/5% hydrogel beads is able to stay intact for 24 h in swelling medium at pH 7.4. It shows pH‐sensitive behavior as the swelling degree increases as pH increases. Fourier transform infrared spectroscopy analysis confirmed the absence of chemical interaction between hydrogel beads and diclofenac sodium. Differential scanning calorimetric and X‐ray diffraction studies indicate the amorphous nature of entrapped diclofenac sodium. The drug encapsulation efficiency is up to about 50%. Less than 9% of drug has been released at pH 1.2 and the hydrogel beads sustain the drug release at pH 7.4 over 30 h. This shows the potential of CMSP/pectin hydrogel beads as carrier for colon‐targeted drug. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43416.  相似文献   

2.
Solutions of carboxymethyl sago pulp (CMSP) of various degree of substitution were irradiated with electron beam of various radiation doses. The gelation dose (Dg) and po/qo ratio (po is degradation density, qo is crosslinking density) is dependent on CMSP concentration and degree of substitution. In the range of concentrations of 10% to 80% (w/v) CMSP with degree of substitutions of 0.4, 0.6, and 0.8, the po/qo ratio decreases with increasing %CMSP showing that crosslinking processes are dominating and increasing the gel network of the CMSP hydrogel. The fourier transform infrared spectra of CMSP hydrogels of degree of substitutions of 0.4, 0.6, and 0.8 with percentage of gel fractions 25, 35, and ≥ 40 show differences in the intensity of the absorption bands at 1020–1100, 1326, and 1422 cm?1 with different degree of substitutions and percentage of gel fraction (%GF) that correspond to different extents of chain scission and crosslinking. The swelling behavior in water shows that CMSP hydrogels could absorb 3500–5300% of water by 1 g of CMSP hydrogel. The ability to absorb water increases with the decrease of degree of substitution and %GF of the CMSP hydrogels. It is also observed that the optimum pH for swelling CMSP hydrogel is at pH 7. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2013  相似文献   

3.
The currently used antimalarials suffer from drug resistance which is hampering the global management of malaria infection. To overcome drug resistance, they are administered as combination therapies which involve combination of two or more antimalarials. In this study, chloroquine diphosphate and curcumin were encapsulated onto prepared soy protein isolate‐carbopol‐polyacrylamide based hydrogels. The hydrogels were pH sensitive and exhibited enhanced swelling capability at pH 7.4. The hydrogels were biodegradable which was observed by their SEM images after drug release. The release mechanisms of both drugs were influenced by the degree of crosslinking of the soy protein isolate in the hydrogel network and the presence of the other drug in the network. The release mechanisms of both drugs from the hydrogel networks followed super case transport II. These results suggested that the hydrogels were potential dual drug delivery systems for antimalarials whereby both drugs could work over different period of time and hence, have the potential to overcome drug resistance that is common with the presently used antimalarials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43918.  相似文献   

4.
To improve the mechanical strength of natural hydrogels and to obtain a sustained drug‐delivery device, temperature‐/pH‐sensitive hydrogel beads composed of calcium alginate (Ca‐alginate) and poly(N‐isopropylacrylamide) (PNIPAAm) were prepared in the presence of poly(sodium acrylate) (PAANa) with ultrahigh molecular weight (Mη ≥ 1.0 × 107) as a strengthening agent. The influence of PAANa content on the properties, including the beads stability, swelling, and drug‐release behaviors, of the hydrogels was evaluated. Scanning electron microscopy and oscillation experiments were used to analyze the structure and mechanical stability of the hydrogel beads, respectively. The results show that stability of the obtained Ca‐alginate/PNIPAAm hydrogel beads strengthened by PAANa the alginate/poly(N‐isopropyl acrylamide) hydrogel bead (SANBs) was significantly improved compared to that of the beads without PAANa (NANBs) at pH 7.4. The swelling behavior and drug‐release capability of the SANBs were markedly dependent on the PAANa content and on the environmental temperature and pH. The bead sample with a higher percentage of PAANa exhibited a lower swelling rate and slower drug release. The drug release profiles from SANBs were further studied in simulated intestinal fluid, and the results demonstrated here suggest that SANBs could serve as a potential candidate for controlled drug delivery in vivo. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Poly(HEMA‐MAA) hydrogel particles were synthesized by redox free‐radical polymerization using 2‐hydroxyethylmethacrylate, different concentration of methacrylic acid as monomer, ethyleneglycol dimethacrylate as crosslinking agent, and APS/TEMED as free‐radical initiator. Fourier transform infrared spectrum of poly(HEMA‐MAA) hydrogels showed intense absorption peak of carbonyl group at ~ 1700 cm?1 due to carboxylic acid groups of MAA, peak at ~ 2960 cm?1 due to CH stretching and vinylic peak at 1700 cm?1 independent of MAA concentration. Highest swelling percentage 587% was observed in case of poly(HEMA‐MAA) hydrogel synthesized using 30% of MAA while lowest swelling percentage 413% was observed in hydrogel synthesized 10% of MAA at basic pH (8.0). Scanning electron micrograph of copolymeric particles showed the irregular shape of poly(HEMA‐MAA) particles with conglomeration with each due to ionization of carboxylic groups. Insulin was radiolabeled using technetium‐99m radionuclide and the radiolabeling efficiency was found to be 99%. Poly(HEMA‐MAA) hydrogel having 60% of MAA showed the highest insulin loading efficiency of 68% while lowest 37% was observed in case of 10% MAA hydrogel. Insulin release studies showed only 35–65% of insulin was released into the medium from particles at pH 2.5 in 60 min, while insulin release was significantly higher at pH 7.4. Hypoglycemic effect of the 60 and 80 I.U./kg insulin dose loaded in poly(HEMA‐MAA) copolymeric particles were carried out in fasted diabetic rats and highest decrease in blood glucose level from 506 mg/dL to 170 mg/dL was observed within first 3 h. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

6.
In this study, pH responsive polymers composed of methacrylic acid, acrylamide, and N‐hydroxyethyl acrylamide were synthesized by free radical polymerization technique. The characterization was done with Fourier transform infrared spectroscopy and scanning electron microscopy. The swelling and drug release behavior of the hydrogels was determined as a function of time at 37°C in pH 2.1 and 7.4. The swelling and drug release studies showed that increased methacrylic acid amount caused a higher increase in swelling and drug release values at pH 7.4 than those at pH 2.1. In addition, the drug release data were applied to kinetic models such as zero order, first order, and Higuchi equations, and it fit well in the Higuchi model of the hydrogel. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43226.  相似文献   

7.
Hydrogels, composed of poly(acrylamide‐co‐maleic acid) were synthesized and the release of vitamin B2 from these gels was studied as a function of the pH of the external media, the initial amount of the drug loaded, and the crosslinking ratio in the polymer matrix. The gels containing 3.8 mg of the drug per gram gel exhibit almost zero‐order release behavior in the external media of pH 7.4 over the time interval of more than their half‐life period (t1/2). The amount of the drug loaded into the hydrogel also affected the dynamic release of the encapsulated drug. As expected, the gels showed a complete swelling‐dependent mechanism, which was further supported by the similar morphology of the swelling and release profiles of the drug‐loaded sample. The hydrophilic nature of the drug riboflavin does not contribute toward the zero‐order release dynamics of the hydrogel system. On the other hand, the swelling osmotic pressure developed between the gels and the external phase, due to loading of the drug by equilibration of the gels in the alkaline drug solution, plays an effective role in governing the swelling and release profiles. Finally, the minimum release of the drug in the swelling media of pH 2.0 and the maximum release with zero‐order kinetics in the medium of pH 7.4 suggest that the proposed drug‐delivery devices have a significant potential to be used as an oral drug‐delivery system for colon‐specific delivery along the gastrointestinal (GI) tract. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1133–1145, 2002; DOI 10.1002/app.10402  相似文献   

8.
Hydrogel composed of β‐cyclodextrin (β‐CD) and poly(vinyl alcohol) was prepared in a strong alkaline condition using epichlorohydrin as a crosslinker. Phenylpropionic acid (PPA) and naphthylamine (NA) were loaded in the cavities of β‐CD residues to endow the hydrogel with a dual pH‐sensitive characteristic. In release experiments using fluorescein isothiocyanate‐dextran (FITC‐dextran) as a dye, PPA/NA‐loaded hydrogel exhibited an extensive release not only in acidic conditions (e.g. pH 3.0) but also in alkaline conditions (e.g. pH 9.0). PPA and NA will be highly ionized at the alkaline and the acidic pH and they could promote swelling of the hydrogel, causing an extensive release at those pH values. However, the release was suppressed at mid pH values (e.g. pH 5.0 and pH 7.4), possibly due to the formation of salt bridges between PPA? and NA+. In fact, the degree of swelling at mid pH was lower than that observed at strong acidic pH and alkaline pH. According to SEM images, the pore size and the texture compactness of hydrogels which had been subjected to swelling at different pH values could also account for the dual pH‐sensitive releases. The hydrogels exhibited dual pH sensitivities in terms of FITC‐dextran release and swelling. These hydrogels might be used as a pH‐sensitive vehicle for water‐soluble drugs. © 2013 Society of Chemical Industry  相似文献   

9.
Using feather keratin as biocompatible and inexpensive natural biopolymer and methacrylic acid as a functional monomer, we prepared a pH‐sensitive feather‐keratin‐based polymer hydrogel (FKPGel) with grafted copolymerization. The obtained FKPGel was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. The swelling behavior and pH sensitivity of the FKPGel were investigated. When the small molecule (rhodamine B) and macromolecule (bovine serum albumin) were used as model drug molecules, the FKPGel exhibited controllable release behavior in vitro, and the hydrogels had pH sensitivity. For a small molecular drug, the cumulative release rate was 97% in 24 h at pH 8.4. For macromolecular drug, the cumulative release rate reached 89% at pH 7.4. Its release behavior could be controlled by the pH value. In summary, a simple method was found to reuse disused feathers. It is a kind of pH‐sensitive hydrogels to be applied in drug‐delivery systems. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41572.  相似文献   

10.
Biocompatible and biodegradable pH‐responsive hydrogels based on poly(acrylic acid) (AAc) and chitosan were prepared for controlled drug delivery. These interpolymeric hydrogels were synthesized by a gamma irradiation polymerization technique. The degree of gelation was over 96% and increased as the chitosan or acrylic acid content increased. The equilibrium swelling studies of hydrogels prepared in various conditions were carried out in an aqueous solution, and the pH sensitivity in the range of pH 1–12 was investigated. The AAc/chitosan hydrogels showed the highest water content when the 30 vol % AAc and 0.1 wt % chitosan were irradiated with a 30‐kGy radiation dose. Also, an increase of swelling degree with an increase in the pH was noticed and showed the highest value at pH 12. The drug, 5‐fluorouracil, was loaded into these hydrogels and the release studies were carried out in simulated gastric and intestinal fluids. The in vitro release profiles of the drugs showed that more than 90% of the loaded drugs were released in the first 1 h at the intestinal pH and the rest of the drug had been released slowly. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3660–3667, 2003  相似文献   

11.
Semi‐interpenetrating polymer network hydrogels with different compositions of chitosan (Cs), acrylic acid, and citraconic acid were synthesized via free‐radical polymerization with ethylene glycol dimethacrylate as a crosslinker. The variations of the swelling percentages of the hydrogels with time, temperature, and pH were determined, and Cs–poly(acrylic acid) (PAA) hydrogels were found to be most swollen at pH 7.4 and 37°C. Scanning electron micrographs of Cs–PAA and Cs–P(AA‐co‐CA)‐1 (Cs‐poly(acrylicacid‐co‐citraconir acid)?1) were taken to observe the morphological differences in the hydrogels. Although the less swollen hydrogel, Cs–P(AA‐co‐CA)‐1, had a sponge‐type structure, the most swollen hydrogel, Cs–PAA, displayed a uniform porous appearance. Fluconazole was entrapped in Cs–P(AA‐co‐CA)‐1 and Cs–PAA hydrogels, and the release was investigated at pH 4.0 and 37°C. The kinetic release parameters of the hydrogels (the gel characteristic constant and the swelling exponent) were calculated, and non‐Fickian diffusion was established for Cs–PAA, which released fluconazole much more slowly than the Cs–P(AA‐co‐CA)‐1 hydrogel. A therapeutic range was reached at close to 1 h for both hydrogels. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Hydrogels based on pH‐sensitive polymers are of great interest as potential biomaterials for the controlled delivery of drug molecules. In this study, a novel, pH‐sensitive hydrogel was synthesized by poly(aspartic acid) (PASP) crosslinked with 1,6‐hexanediamine and reinforced with ethylcellulose (EC). The loading and release characteristics of naproxen sodium (NS) were studied. The PASP–EC blend hydrogels had pH‐sensitive characteristics and were strongly dependent on the pH value. The release kinetics for NS from the PASP–EC blend hydrogels and PASP hydrogel were evaluated in simulated gastric fluid (pH = 1.05) and simulated intestinal fluid (pH = 6.8) at 37°C. The results showed that the drug‐loaded hydrogels were resistant to simulated gastric fluid, and hence, they could be useful for oral drug delivery. Compared with the PASP hydrogel, the PASP–EC blend hydrogels showed a lower release rate of NS in the same pH conditions. It was evident that the presence of hydrophobic groups (EC) retarded the release of NS and led to sustained release. The kinetics of NS release from the drug‐loaded hydrogels conformed to the Korsmeyer–Peppas model. The release exponent of the model was 0.7291, which indicated multiple drug release. The PASP–EC blend hydrogels were biodegradable and pH sensitive; there would be a wide range of applications for them in controlled drug‐delivery systems. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Biocompatible and biodegradable pH‐responsive hydrogels based on poly(acrylic acid) and chitosan were prepared for controlled drug delivery. These interpolymeric hydrogels were synthesized by a γ‐irradiation polymerization technique. The degree of gelation was over 96% and increased as the chitosan or acrylic acid (AAc) content increased. The equilibrium swelling studies of hydrogels prepared under various conditions were carried out in an aqueous solution, and the pH sensitivity in a range of pH 1–12 was investigated. The AAc/chitosan hydrogels showed the highest water content when 30 vol % AAc and 0.1 wt % chitosan were irradiated with a 30 kGy dose of radiation. In addition, an increase of the degree of swelling with an increase in the pH was noticed and it had the highest value at pH 12. The drug 5‐fluorouracil was loaded into these hydrogels and the release studies were carried out in simulated gastric and intestinal fluids. The in vitro release profiles of the drugs showed that more than 90% of the loaded drugs were released in the first 1 h at intestinal pH and the rest of the drug was released slowly. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3270–3277, 2003  相似文献   

14.
This work describes the preparation, the swelling properties and the potassium diclofenac (KDF) release profile of hydrogels of gum arabic (GA), N′,N′‐dimethylacrylamide, and methacrylic acid. In order to convert GA into a hydrogel, the polysaccharide was vinyl‐modified with glycidyl methacrylate. The hydrogels showed pH‐responsive swelling changes, which were more expressive in the basic environment. Release data of KDF were adjusted to a diffusion‐based kinetic model that provides an important insight on affinity of the drug for hydrogel and solvent, which may be the leading parameter for release of guest molecules from polymers. The KDF release from the hydrogels into simulated intestinal fluid decreases when the amount of modified GA increases. This was demonstrated to be due to the higher affinity of KDF for GA‐richer hydrogel, which makes the anti‐inflammatory release less favorable. The analysis of released drug half‐time (t1/2 = 16.10 and 21.51 h) indicated sustained release characteristics. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43319.  相似文献   

15.
Cationic hydrogels were synthesized through the copolymerization of N‐isopropylacrylamide and dimethylaminoethylmethacrylate. N,N′‐Methylenebisacrylamide was used as a crosslinking agent, and sodium bisulfite/ammonium persulfate was used as an initiator. The equilibrium and dynamic swelling properties were investigated to reveal the pH sensitivity and thermosensitivity of the hydrogels. The conclusion was drawn that the prepared cationic hydrogels demonstrated critical sensitivity at 37°C and pH 7.0–8.0 and that the stronger the acidity was of the buffered solution, the shorter the equilibrium swelling time was of the hydrogels. Drug‐release experiments in vitro were carried out at 37°C (close to body temperature), at pH 1.4 (close to the pH of the stomach), and at pH 7.4 (close to the pH of the intestine). The release results indicated that the drug (chloramphenicol) was released more rapidly from the prepared hydrogel in a pH 1.4 buffered solution than in a pH 7.4 one, and this was consistent with the results predicted from the experiments of the swelling kinetics. Moreover, the drug‐release process was confirmed by scanning electron micrographs of the hydrogels embedded with chloramphenicol. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3602–3608, 2006  相似文献   

16.
The potential of crosslinked carboxymethyl sago pulp (CMSP) beads immobilized with powdered activated carbon (PAC) as an adsorbent for methylene blue (MB) adsorption was investigated. The finely powdered PAC had an excellent adsorption capacity for MB but was disadvantageous for the separation process from treated effluents. To ease the separation process, the CMSP medium could be advantageous for the process by acting an immobilizing medium for PAC. The MB adsorption reached equilibrium at the 14th hour, and further adsorption was studied to determine the effects of the CMSP concentration, PAC dosage, and pH. Different CMSP concentrations in the preparation of CMSP–PAC beads showed no significant differences; this proved that CMSP–PAC adsorbed more MB than CMSP did. The MB adsorption increased with increasing PAC concentration, whereas the CMSP–PAC beads disintegrated at pH 11.5. In the equilibrium study, the Langmuir isotherm fit well into the experimental data with a linear correlation coefficient (R 2) of 0.9837 and a maximum adsorption capacity of 250 mg/g. The kinetic study showed that pseudo‐second‐order kinetics accommodated the experimental data well with an R 2 value of 0.9512 and a pseudo‐second‐order rate constant value of 3.61 × 10?3 min?1. The crosslinked CMSP–PAC beads have the potential to remove MB dye, and this could be exploited as an alternative to treating colored dye effluents produced by industries such as the textile, printing, and cosmetics industries. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44271.  相似文献   

17.
In order to prepare cost‐effective physically cross‐linked hydrogels including food salt sodium chloride, samples, were prepared with various concentrations of NaCl and respective atactic poly(vinyl alcohol) (a‐PVA), and were evaluated. It had been observed that hydrogels containing NaCl concentration (9–11 wt%) along with a‐PVA concentration 9–5% respectively exhibited higher melting points (91.5–95.1 °C). A higher melting point characterizes the hydrogel composition of a system like a‐PVA(7%)/NaCl(11%)/H2O. The swelling degree of this hydrogel was found to be comparatively better at 37 °C than at any other temperature studied here. However, irregular Fickian swelling was found at this temperature. The UV light absorption maximum at 362–364 nm and minimum at 351 nm for this hydrogel had been found as evidence of physical cross‐linking. A drug, theophylline was loaded by solvent‐sorption and feed‐mixture dissolving methods. The feed‐mixture dissolving method is better than solvent sorption because of high drug loading, comparatively low fraction release rate and more sustained‐release of drug than that of solvent‐sorption. Theophylline was released twice as fast from the hydrogel after solvent‐sorption drug loading (3 h) than from that which used the feed‐mixture dissolving method (6.5 h). Theophylline‐loaded hydrogels of this system (feed‐mixture dissolving) were then prepared at high temperature (60 °C) thawing for 6 h followed by chilling at 0.4 °C for 3 h as one cycle. And the drug release behaviour and mass transfer were found almost the same as for chilling (24 h at 0.4 °C)–thawing (48 h at room temperature). Drug release behaviour was studied as apparently irregular Fickian diffusion (Higuchi Matrix Dissolution Model). © 2002 Society of Chemical Industry  相似文献   

18.
A series of pH‐temperature dual stimuli‐responsive random copolymers poly[N,N‐dimethylaminoethyl methacrylate‐co‐poly(poly(ethylene glycol) methyl ether methacrylate][poly(DMAEMA‐co‐MPEGMA)] were synthesized by free radical polymerization. The supramolecular hydrogel was formed by pseudopolyrotaxane, which was prepared with the host‐guest interactions between α‐cyclodextrin (α‐CD) and poly(ethylene glycol) (PEG) side chains. Fourier transform infrared (FT‐IR), nuclear magnetic resonance (1H NMR), and X‐ray diffraction (XRD) confirmed the structures of the hydrogels. The pH‐temperature dual stimuli responsive properties of the hydrogels were characterized by rheometer. Finally, the controllable drug release behavior of the hydrogel, which was used 5‐fluorouracil (5‐Fu) as the model drug, was investigated at different temperatures and different pH values. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43279.  相似文献   

19.
To reach sustained drug release, a new composite drug‐delivery system consisting of poly(d,l ‐lactide‐co‐glycolide) (PLGA) nanoparticles (NPs) embedded in thermosensitive poly(N‐isopropyl acrylamide) (PNIPAAm) hydrogels was developed. The PNIPAAm hydrogels were synthesized by free‐radical polymerization and were crosslinked with poly(ethylene glycol) diacrylate, and the PLGA NPs were prepared by a water‐in‐oil‐in‐water double‐emulsion solvent‐evaporation method. The release behavior of the composite hydrogels loaded with albumin–fluorescein isothiocyanate conjugate was studied and compared with that of the drug‐loaded neat hydrogel and PLGA NPs. The results indicate that we could best control the release rate of the drug by loading it to the PLGA NPs and then embedding the whole system in the PNIPAAm hydrogels. The developed composite hydrogel systems showed near zero‐order drug‐release kinetics along with a reduction or omission of initial burst release. The differential scanning calorimetry results reveal that the lower critical solution temperature of the developed composite systems remained almost unchanged (<1°C increase only). Such a characteristic indicated that the thermosensitivity of the PNIPAAm hydrogel was not distinctively affected by the addition of PLGA NPs. In conclusion, an approach was demonstrated for the successful preparation of a new hybrid hydrogel system having improved drug‐release behavior with retained thermosensitivity. The developed systems have enormous potential for many biotechnological applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40625.  相似文献   

20.
Hydrogels, composed of poly(N‐vinyl‐2‐pyrrolidone) and crosslinked polyacrylamide, were synthesized and the release of vitamin B12 from these hydrogels was studied as a function of the degree of crosslinking and pH of the external swelling media. The three drug‐loaded hydrogel samples synthesized with different crosslinking ratios of 0.3, 0.7, and 1.2 (in mol %) follow different drug‐release mechanisms, that is, chain relaxation with zero‐order, non‐Fickian and Fickian, or diffusion‐controlled mechanisms. To establish a correlation between their swelling behavior and drug‐release mechanism, the former was studied by the weight‐gain method and, at the same time, the concentration of the drug released was studied colorimetrically. Various swelling parameters such as the swelling exponent n, gel‐characteristic constant k, penetration velocity v, and diffusion coefficient D were evaluated to reflect the quantitative aspect of the swelling behavior of these hydrogels. Finally, the drug‐release behavior of the hydrogels was explained by proposing the swelling‐dependent mechanism. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1706–1714, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号