首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
To explore a potential method for improving the toughness of a polylactide (PLA), we used a thermoplastic polyurethane (TPU) elastomer with a high strength and toughness and biocompatibility to prepare PLA/TPU blends suitable for a wide range of applications of PLA as general‐purpose plastics. The structure and properties of the PLA/TPU blends were studied in terms of the mechanical and morphological properties. The results indicate that an obvious yield and neck formation was observed for the PLA/TPU blends; this indicated the transition of PLA from brittle fracture to ductile fracture. The elongation at break and notched impact strength for the PLA/20 wt %TPU blend reached 350% and 25 KJ/m2, respectively, without an obvious drop in the tensile strength. The blends were partially miscible systems because of the hydrogen bonding between the molecules of PLA and TPU. Spherical particles of TPU dispersed homogeneously in the PLA matrix, and the fracture surface presented much roughness. With increasing TPU content, the blends exhibited increasing tough failure. The J‐integral value of the PLA/TPU blend was much higher than that of the neat PLA; this indicated that the toughened blends had increasing crack initiation resistance and crack propagation resistance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
The objective of this work is the synthesis of a polypropylene/ethylene‐propylene‐rubber (TPO)/polylactide (PLA)/compatibilizer (PVM) blend to reduce the elongation at break of TPO by blending TPO with brittle PLA. Three TPO types with different viscosities were melt blended with PLA and an ethylene/n‐butylacrylate/glycidyl methacrylate terpolymer (PVM) as reactive compatibilizer. All blends had a constant PLA amount of 30 wt%. Two parameters were varied in the experiments, viscosity of the TPO types, and amount of PVM used in the blends. Both parameters played important roles in reducing the nominal elongation at break compared to pure TPO foils and influencing the phase morphology of extruded blend foils. The nominal elongation at break could be reduced by 100‐150% through blending TPO with PLA and PVM. Characterization regarding the blend morphology, especially the size and shape of the dispersed PLA phase in the TPO matrix was done by Environmental Scanning Electron Microscopy (ESEM) images. Investigations of the morphology showed that size and shape of dispersed PLA phases are dependent on the viscosity ratios of the blend components and on the amount of compatibilizer in the blend. AFM images of the polymer blends reveal soft rubbery layers around the dispersed PLA phases. POLYM. ENG. SCI., 56:905–913, 2016. © 2016 Society of Plastics Engineers  相似文献   

3.
Polylactic acid (PLA) was reactively functionalized with maleic anhydride (MA) and 2,5‐bis(tert‐butylperoxy)?2,5‐dimethylhexane (Luperox 101 or L101) using a twin screw extruder (TSE). The effects of functionality (grafted MA level) and/or number average molecular weight of functionalized PLA (PLA‐g‐MA) as the reactive polymer pairs (binary blends) and reactive compatibilizer (ternary blends) were investigated. Due to the dominant side reaction during melt free radical grafting, polymer degradation or chain scission, PLA‐g‐MA having a higher grafted MA had lower molecular weights and intrinsic viscosity as well as broader molecular weight distribution values. The thermal, physical, mechanical, and morphological properties of binary blends produced by using the TSE and injection molding at a ratio of 70 wt % PLA‐g‐MA and 30 wt % thermoplastic cassava starch (TPCS) were analyzed. The reactive blends having grafted MA more than 0.4 wt % had poor tensile strength and elongation at break. Similar trends in morphology and tensile properties were observed in the reactive ternary blends. The use of PLA‐g‐MA strongly impacted the elongation at break but not the modulus or tensile strength. An increase of PLA‐g‐MA's number average molecular weight ( or Mn) improved the tensile properties of the blends. The reactive ternary blend having 0.1 wt % grafted MA on PLA and PLA‐g‐MA basis and PLA‐g‐MA's Mn of 45 kDa offered the highest elongation at break. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42230.  相似文献   

4.
This work reports on the development of polylactide (PLA) and polycarbonate (PC) blends with different compatibilizers with enhanced toughness. Since both polymers are immiscible, two types of compatibilizers are tested: petrochemical-based copolymers Xibond 160 and Xibond 920 with maleic anhydride and epoxy groups, respectively, and natural-based compatibilizers with the same functionalities, namely maleinized linseed oil (MLO) and, epoxidized linseed oil (ELO). Mechanical, thermal, and morphological characterization shows better properties for the PLA/PC (80/20 wt%) blends with chemically modified natural oils (ELO and MLO). The addition of 5 phr (parts per hundred resin) of MLO gives the maximum values for impact strength and elongation at break. Moreover, the glass transition temperature (Tg) slightly decreases with the addition of natural compatibilizers, thus showing some plasticization effect. Petroleum-derived compatibilizers give interesting results regarding tensile strength and stiffness without plasticization. PLA/PC blends show higher thermal stability than neat PLA, regardless of the compatibilizer used, since PC is much more thermally stable than PLA. The obtained results indicate that both petroleum-based and natural-derived compatibilizers positively contribute to enhance the properties of the binary PLA/PC blends. Nevertheless, the results with MLO suggest this is an interesting biobased solution to provide increased toughness to PLA/PC blends.  相似文献   

5.
《Polymer Composites》2017,38(12):2841-2851
This work sought to improve the toughness and thermal stability of poly(lactic acid) (PLA) by incorporating poly(butylene succinate) (PBS) and wood flour (WF). The PLA/PBS blends showed a PBS‐dose‐dependent increase in the impact strength, elongation at break, degree of crystallinity, and thermal stability compared to the PLA, but the tensile strength, Young's modulus, and flexural strength were all decreased with increasing PBS content. Based on the optimum impact strength and elongation at break, the 70/30 (w/w) PLA/PBS blend was selected for preparing composites with five loadings of WF (5–30 phr). The impact strength, tensile strength, flexural strength, and thermal stability of the PLA/PBS/WF composites decreased with increasing WF content, and the degree of crystallinity was slightly increased compared to the 70/30 (w/w) PLA/PBS blend. Based on differential scanning calorimetry, the inclusion of PBS and WF into PLA did not significantly change the glass transition and melting temperatures of PLA in the PLA/PBS blends and PLA/PBS/WF composites. From the observed cold crystallization temperature of PLA in the samples, it was evident that the degree of crystallinity of PLA in all the blends and composites was higher than that of PLA. The PLA/PBS blend and PLA/PBS/WF composite degraded faster than PLA during three months in natural soil, which was due to the fast degradation rate of PBS. POLYM. COMPOS., 38:2841–2851, 2017. © 2016 Society of Plastics Engineers  相似文献   

6.
Styrene–butadiene impact resin (SBC) was chosen as the toughening agent to improve the tensile toughness of polylactide (PLA). Epoxidized SBC (ESBC) with different epoxidation degree were prepared by epoxidation using in situ peroxoformic acid method and a series of PLA/SBC(ESBC) blends were prepared by melt blending. The elongation at break of the PLA/ESBC blends was greatly improved, which was reflected in the slight decrease in the tensile strength and tensile modulus. Moreover, the tensile strength and tensile modulus were not significantly affected by the epoxidation degree of ESBC. For example, the incorporation of ESBC28.8% (30 wt %) to PLA caused an obvious increment of elongation at break from 3.5% of pure PLA to 305.0%, while the tensile modulus and tensile strength decreased to 80 and 78% of pure PLA, respectively. Scanning electron microscopy observations of cryo‐fractured surface morphology and particle size analysis demonstrated that the compatibility of the PLA/ESBC blends was improved significantly compared to PLA/SBC blend. PLA/ESBC(70/30) blends exhibited shear‐thinning behavior over the range of the studied shear rate. With an increase in shear rate, the non‐Newtonian index of the blends decreased gradually. Furthermore, the flow behavior of PLA/ESBC(70/30) blends was more sensitive to the shear rate than pure PLA. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46058.  相似文献   

7.
This research work has concerned a study on relationship between structure and properties of maleated thermoplastic starch (MTPS)/plasticized poly(lactic acid) (PLA) blend. The aim of this work is to investigate the effects of blending time, temperature, and blend ratio on mechanical, rheological, and thermal properties of the blend. The MTPS was prepared by mixing the cassava starch with glycerol and maleic anhydride (MA). Chemical structure of the modified starch was characterized by using a FTIR technique, whereas the degree of substitution was determined by using a titration technique. After that, the MTPS prepared by 2.5 pph of MA was further used for blending with triacetin‐plasticized PLA under various conditions. Mechanical, thermal, and rheological properties of the blends were evaluated by using a tensile test, dynamic mechanical thermal analysis, and melt flow index (MFI) test, respectively. It was found that tensile strength and modulus of the MTPS/PLA blend increased with the starch content, blending temperature, and time, at the expense of their toughness and elongation values. The MFI values also increased with the above factors, suggesting some chain scission of the polymers during blending. SEM images of the various blends, however, revealed that the blend became more homogeneous if the temperature was increased. The above effect was discussed in the light of trans‐esterification. Last, it was found that mechanical properties of the PLA/MTPS blend were more superior to those of the normal PLA/TPS blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
The structure and properties of polycarbonate (PC)/poly(methyl methacrylate) (PMMA) blends fabricated using a high‐shear extruder at different shear rates were investigated. It was found that the morphologies of the blends were greatly dependent on the shear rate exerted during melt processing. High‐shear processing leads to a nanostructured PC/PMMA blend, in which PMMA domains with a size of less than 50 nm are homogeneously dispersed in the PC matrix. The prepared nanostructured blends exhibit not only excellent optical properties with a transmittance of more than 90% in the visible region but also a higher modulus than pure PC. In contrast, the PMMA domain size ranges from submicron to micrometer for the same blends processed at a low‐shear rate. These blends are opaque and display much lower elongation at break compared with the blends processed at a high‐shear rate. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

9.
In this article, a new degradable thermoplastic konjac glucomannan (TKGM) was synthesized by graft copolymerization of vinyl acetate and methyl acrylate onto konjac glucomannan (KGM). Melt blending of polylactide (PLA) and TKGM has been performed in an effort to improve the processing and comprehensive mechanical properties of PLA and TKGM without compromising its degradability and biocompatibility. The miscibility, processing rheology, phase morphology, thermal properties, interaction, crystallization and mechanical properties of PLA/TKGM blends were investigated in detail. The thermal processing property of PLA/TKGM blend (60/40) was quite close to low density polyethylene (LDPE). As observed from the tan δ curves in dynamic mechanical analysis, all of the blends exhibit a single glass transition over the entire composition range, indicating that the blends were thermodynamically miscible. The TKGM exhibited a relatively broad endothermic peak at around 120 °C, which was lower than that of KGM. And an obvious glass-transition behavior was obtained around 26.6 °C. Furthermore, the PLA/TKGM blend (60/40) had a very high elongation at break of 234.8%, while the tensile strength remained as high as 36.5 MPa. And the PLA/TKGM blend (20/80) resulted in an even greater ductility with an elongation at break of 520.5% as compared with 14.1% for pure PLA. A substantial increase in the non-notched impact strength was also observed with the PLA/TKGM blend (20/80) demonstrating two times the impact strength of pure PLA.  相似文献   

10.
To improve the impact toughness of poly(lactic acid) (PLA), four kinds of rubbery modifiers, including ground tyre rubber (GTR), styrene‐butadiene‐styrene block copolymer (SBS), ethylene‐α‐octene copolymer (EOC) and glycidyl methacrylate grafted EOC (mEOC), were introduced for fabricating the PLA blends. The morphological structures, mechanical properties, thermal stability and thermal decomposition kinetics of pristine PLA and the blends were investigated. Results showed that representative droplet‐matrix structures were observed in the PLA blends, of which the PLA/SBS blend presented the smallest domains while PLA/EOC case had the largest elastomeric particle size. Accordingly, the highest impact toughness and elongation at break were achieved by PLA/SBS blend, whereas the tensile strength and elastic modulus for the blends were all lower than that of pristine PLA. Though the incorporation of rubbery modifiers barely altered the peak temperature of melting, the degrees of crystallinity for blends were declined sharply. The results of thermo gravimetric analysis indicated thermal degradation process of PLA phase was accelerated by rubbery modifiers and evidenced by the relative higher mass conversion at peak temperature. The reaction order of PLA phase for blends calculated by Carrasco method exhibited similar values when compared with control sample. However, the values of activation energy were rather lower than that of pure PLA. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43340.  相似文献   

11.
The biopolymer poly‐3‐hydroxybutyrate‐co‐3‐hydroxyvalerate (PHBV) is a promising material for packaging applications but its high brittleness is challenging. To address this issue, PHBV was blended with nine different biopolymers and polymers in order to improve the processing and mechanical properties of the films. Those biopolymers were TPS, PBAT, a blend of PBAT + PLA, a blend of PBAT + PLA + filler, PCL and PBS, and the polymers TPU, PVAc, and EVA. The extruded cast films were analyzed in detail (melting temperature, crystallinity, mechanical properties, permeation properties, and surface topography). A decrease in crystallinity and Young's modulus and an increase in elongation at break and permeability were observed with increasing biopolymer/polymer concentration. In PHBV‐rich blends (≥70 wt % PHBV), the biopolymers/polymers PCL, PBAT, and TPU increased the elongation at break while only slightly increasing the permeability. Larger increases in the permeability were found for the films with PBS, PVAc, and EVA. The films of biopolymer/polymer‐rich blends (with PBAT, TPU, and EVA) had significantly different properties than pure PHBV. A strong effect on the properties was measured assuming that at certain biopolymer/polymer concentrations the coherent PHBV network is disrupted. The interpretation of the permeation values by the Maxwell–Garnett theory confirms the assumption of a phase separation. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46153.  相似文献   

12.
聚乳酸/羟丙基淀粉复合降解型材料的制备和表征   总被引:3,自引:3,他引:0  
羟丙基改性淀粉作为填充剂,在偶联剂作用下与聚乳酸共混、挤出制备聚乳酸/羟丙基淀粉复合降解型材料。随着羟丙基改性淀粉含量的增加,共混材料的硬度略有增加、拉伸强度和断裂伸长率都先减小后增大,材料的吸水率和降解速率增加,且改性淀粉取代度的增加有利于提高材料的韧性。  相似文献   

13.
The durability of polylactide (PLA) blended with polycarbonate (PC) was assessed by exposure to conditions of elevated temperature and humidity over a period of several weeks. Mechanical performance, moisture absorption, chemical composition, and thermal properties were monitored as a function of continuous conditioning at 70°C and 90% relative humidity (RH). All PLA and PC/PLA blends showed significant moisture absorption and hydrolysis, resulting in degradation of properties. Furthermore, while the addition of PC was intended to improve the durability of the blend over neat PLA, it was found that the hydrolysis products of PLA accelerated the degradation of PC itself. This study shows for the first time the hydrolysis behavior of PC/PLA blends in an increasingly acid environment during heat and humidity conditioning. These injection‐molding grades of PLA‐based resins are currently not suitable for use in applications that require long‐term durability in environments subject to elevated temperature and humidity, such as automotive interiors. Further material formulation work is required before use in injection‐molded applications for automotive. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
A mixture design of experiment and subsequent regression analysis was used to study the effects of two additives on blends of poly(lactic acid) (PLA) and acrylonitrile butadiene styrene (ABS). Statistical analysis was used to find a blend with a balance of high toughness, strength, and stiffness. The blends were prepared by lab scale reactive extrusion and injection molding. Least‐square regression models of statistically significant effects were built by analysis of variance (ANOVA). Using these models, optimization studies were used to study the predicted maximum values of each measurement criteria. Very large increases were seen in the measured responses with relatively small changes in additive content. Compared to the neat blend without additives, the impact strength was increased by over 600%, the elongation at break was increased by over 1000%, the tensile strength increased by 11%, and the tensile modulus increased by over 7%. Surprisingly, the composite optimization, which included all measured criteria, occurred at a point that allowed all four criteria values to remain very close to their individual maximums. The result is a partially biobased blend that does not sacrifice strength or stiffness to achieve very high toughness. © 2016 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44516.  相似文献   

15.
Plastics in solid wastes is a problem of growing concern. Recycling of wastes is currently believed to be the most acceptable form of disposal in the long run; however, this route is known to be especially difficult for plastics. Recycling would be easier if the various generic types present in solid wastes, mainly polyethylene, polystyrene and poly (vinyl chloride), could be isolated; however, this would be very difficult and expensive. This is a first report on research aimed at evaluating the potential of recycling plastics as a polymer blend of the various generic types. This approach suffers from the difficulty that the different plastics are incompatible and the blend has poor mechanical properties. The extent of this problem is documented with data on many ternary blends employing virgin polyethylene, polystyrene and poly (vinyl chloride) of numerous grades likely to be found in solid wastes. Property degradation was found to be more severe as the complexity of the blend increased, indicating that general municipal wastes could be reused only in very low grade applications, whereas certain commercial wastes might have brighter prospects. Strategies for improving blend properties are outlined.  相似文献   

16.
Poly (lactic acid) (PLA) is an important biodegradable plastic with unique properties. However, its widespread application is hindered by its low miscibility and suboptimal degradation properties. To overcome these limitations, we investigated the mechanical, thermal, and degradation properties of PLA and poly (butylene sebacate-co-terephthalate) (PBSeT) blends in the presence of poly (ethylene oxide) (PEO). Specifically, this study aimed to identify the effects of PEO as a compatibilizer and hydrolysis accelerator in PLA/PBSeT blends. PLA (80%) and PBSeT (20%) were melt blended with various PEO contents (2–10 phr), and their mechanical, thermal, and hydrolytic properties were analyzed. All PEO-treated blends exhibited a higher elongation at break than that of the control sample, and the tensile strength was slightly reduced. In the PEO 10% sample, the elongation at break increased to 800% of that of the control sample. Differential scanning chromatography (DSC) analysis confirmed that when PEO was added to the PLA/PBSeT blends, the two glass transition temperatures (Tg) narrowed, resulting in improved miscibility of PLA and PBSeT. In addition, the hydrolytic degradation of the PLA/PBSeT/PEO blend accelerated as the PEO content increased. It was confirmed that PEO can act as a compatibilizer and hydrolysis-accelerating agent for PLA/PBSeT blends.  相似文献   

17.
Environmental and sustainability issues have catalyzed efforts to replace traditional polymer additives with biobased alternatives. Glucose pentaacetate (GPA) and sucrose octaacetate (SOA) as model commercial saccharide esters and three synthesized glucose hexanoate esters (GHs) were evaluated as bioplasticizers for polylactide (PLA). For the GHs different reaction times were utilized to reach plasticizers with different number of hexanoate groups to establish how the degree of substitution influences miscibility and migration resistance of the plasticizers. The synthesized GHs, GPA, and SOA all showed good miscibility with PLA. Largest improvements in strain at break were observed for the PLA films containing GH plasticizers. These films also exhibited simultaneous increase in stress at break as compared to plain PLA. The GH plasticizers had low tendency to migrate during aging in water and this migration resistance increased with increasing degree of substitution. The GHs are, thus, promising plasticizer alternatives for bioplastics as they also retain the biodegradable nature of these biobased materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41928.  相似文献   

18.
The viability of thermomechanical recycling of post‐consumer milk pouches (blend of low‐density polyethylene (LDPE) and linear low‐density polyethylene (LLDPE)) and its scope for suitable engineering applications were investigated. The effects of blending with ethylene‐propylene‐diene monomer (EPDM) rubber and subsequent curing using dicumyl peroxide (DCP) on the macromolecular structure and properties of recycled polyethylene (PE) blends were studied. The crosslinking efficiency of recycled PE/EPDM blends and possible thermooxidative degradation of recycled polymer upon peroxide curing was assessed using torque and gel content measurements along with infrared spectroscopic analysis. Both the torque and gel content of the blends varied with DCP crosslinking reactions and also were affected by oxidative degradation. In view of the electrical application area of this recycled blend material, the dielectric breakdown strength and volume resistivity were measured. The mechanical performance and thermal stability of recycled PE/EPDM blends improved with progressive crosslinking by DCP but deteriorated somewhat at higher DCP dose. Scanning electron microscopy showed good interface bonding between recycled polymer and dispersed EPDM phase in the cured blends compared to the non‐cured blends. Copyright © 2007 Society of Chemical Industry  相似文献   

19.
Poly(lactic acid) (PLA), a physical blend of PLA and thermoplastic cassava starch (TPCS) (PLA‐TPCS), and reactive blends of PLA with TPCS using maleic anhydride as compatibilizer with two different peroxide initiators [i.e., 2,5‐bis(tert‐butylperoxy)‐2,5‐dimethylhexane (L101) and dicumyl peroxide (DCP)] PLA‐g‐TPCS‐L101 and PLA‐g‐TPCS‐DCP were produced and characterized. Blends were produced using either a mixer unit or twin‐screw extruder. Films for testing were produced by compression molding and cast film extrusion. Morphological, mechanical, thermomechanical, thermal, and optical properties of the samples were assessed. Blends produced with the twin‐screw extruder resulted in a better grade of mixing than blends produced with the mixer. Reactive compatibilization improved the interfacial adhesion of PLA and TPCS. Scanning electron microscopy images of the physical blend showed larger TPCS domains in the PLA matrix due to poor compatibilization. However, reactive blends revealed smaller TPCS domains and better interfacial adhesion of TPCS to the PLA matrix when DCP was used as initiator. Reactive blends exhibited high values for elongation at break without an improvement in tensile strength. PLA‐g‐TPCS‐DCP provides promising properties as a tougher biodegradable film. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46140.  相似文献   

20.
Polylactide (PLA) is the most used biodegradable and biobased food packaging polymer for rigid containers and films. However, its low ductility is a hurdle for increasing its applications in flexible food packaging. A solution is the use of additives. Palm oil deodorizer distillate (PODC) is revealed to be an excellent additive promoting PLA ductility. PODC is a by‐product of vegetable oil refining, which is available in stable quality and in sufficient amounts. Amorphous PLA/PODC blends had an elongation at break of around 130% and that of semi‐crystalline blends was still around 55% compared to the initial 5% of neat PLA. At the same time the PLA rigidity and high glass transition temperatures were kept. PODC was also a very efficient processing aid, allowing for film blow extrusion. The blends were stable in properties during six months without exudation. They complied with legal norms of Food Contact Materials (EU 10/2011) and induced no sensorial alteration of packed food. Therefore PODC is a very interesting alternative to common plasticizers for the production of flexible PLA packaging films. © 2016 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号