首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, poly(methyl methacrylate) (PMMA)/starch composites were prepared by a simple solvent casting method. The morphologies of the PMMA/starch composites were studied by scanning electron microscopy. The intermolecular interaction between PMMA and starch was investigated with Fourier transform infrared spectroscopy. The thermal properties of the PMMA/starch composites were compared with those of the pure PMMA sample. Thermogravimetric analysis showed that the thermal stability increased as the starch content increased in the composites. The biodegradability of the PMMA/starch composites was studied with a soil burial test. The degradability was measured in terms of mechanical strength, which increased as the starch content increased. The essential work of fracture (EWF) of the PMMA/starch composite films was investigated by the application of EWF theory under in‐plane (mode I) conditions, and we found that the toughness, in terms of the EWF of composites, increased compared to that of pure PMMA. The fracture of the composites was also evaluated by ANSYS software, and the results were compared to the experimental output. The increased toughness of these PMMA/starch composites may enable their application in the automobile and packaging industries. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Four types of fibrous membranes based on cellulose acetate (CA)—CA membranes with nonporous fibers, CA/organic montmorillonite (O‐MMT) membranes with nonporous fibers, CA membranes with porous fibers, and CA/O‐MMT membranes with porous fibers—were prepared by electrospinning, and then, they were used for enzyme immobilization. The surface morphologies of the composite fibrous membranes were investigated with scanning electron microscopy and transmission electron microscopy. The optimum pH was 3.5 for all of the immobilized enzymes, and the optimum temperature was 50 °C. Compared with the free enzyme, the immobilized enzyme showed better stability for pH and temperature changes. Moreover, the addition of O‐MMT and the pores on the fibers improved the storage stability and the operational stability. Among the four kinds of fibrous membranes, the CA/O‐MMT membranes with porous fibers showed the best stability for the immobilized enzymes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43818.  相似文献   

3.
Poly(N‐isopropylacrylamide‐co‐acrylic acid) (P(NIPAM‐co‐AA)) microspheres with a high copolymerized AA content were fabricated using rapid membrane emulsification technique. The uniform size, good hydrophilicity, and thermo sensitivity of the microspheres were favorable for trypsin immobilization. Trypsin molecules were immobilized onto the microspheres surfaces by covalent attachment. The effects of various parameters such as immobilization pH value, enzyme concentration, concentration of buffer solution, and immobilization time on protein loading amount and enzyme activity were systematically investigated. Under the optimum conditions, the protein loading was 493 ± 20 mg g?1 and the activity yield of immobilized trypsin was 155% ± 3%. The maximum activity (Vmax) and Michaelis constant (Km) of immobilized enzyme were found to be 0.74 μM s?1 and 0.54 mM, respectively. The immobilized trypsin showed better thermal and storage stability than the free trypsin. The enzyme‐immobilized microspheres with high protein loading amount still can show a thermo reversible phase transition behavior. The research could provide a strategy to immobilize enzyme for application in proteomics. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43343.  相似文献   

4.
Two new ultrafiltration membranes were obtained from a polymer mixture, containing 60% polyacrylonitrile (PAN) and 40% copolymer of methylmethacrylate‐dichlorophenylmaleimide (MMA‐DCPMI). Membrane 1 (MB1) contains 40% DCPMI of the copolymer, and membrane 2 (MB2) contains 15% of the copolymer. The pore size, the specific surface, the water content, the water flux, and the selectivity were determined for the two membranes. The presence of dichlorophenylmaleimide in the copolymer ensures the preparation of membranes suitable for direct covalent enzyme immobilization without further modifications. These membranes were used for immobilization of glucose oxidase (GOD). High amount of bound protein was found on each of the membranes. High relative activities of the immobilized GOD were achieved, 72% for MB1 and 68% for MB2. The properties of the immobilized enzyme (GOD) were determined: optimum pH and temperature and pH, thermal, and storage stability, and then compared with the properties of the native enzyme. The kinetic parameters of the enzyme reaction, Michaelis constant (Km) and maximum reaction rate (Vmax), were also investigated. The results obtained showed that the ultrafiltration membranes prepared from the mixture of PAN and the copolymer MMA‐DCPMI were suitable for use as carriers for the immobilization of GOD. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4334–4340, 2006  相似文献   

5.
Naringinase (EC 3.2.1.40) from Penicillium sp was immobilized by covalent binding to woodchips to improve its catalytic activity. The immobilization of naringinase on glutaraldehyde‐coated woodchips (600 mg woodchips, 10 U naringinase, 45 °C, pH 4.0 and 12h) through 1% glutaraldehyde cross‐linking was optimized. The pH–activity curve of the immobilized enzyme shifted toward a lower pH compared with that of the soluble enzyme. The immobilization caused a marked increase in thermal stability of the enzyme. The immobilized naringinase was stable during storage at 4 °C. No loss of activity was observed when the immobilized enzyme was used for seven consecutive cycles of operations. The efficiency of immobilization was 120%, while soluble naringinase afforded 82% efficacy for the hydrolysis of standard naringin under optimal conditions. Its applicability for debittering kinnow mandarin juice afforded 76% debittering efficiency. Copyright © 2005 Society of Chemical Industry  相似文献   

6.
Invertase was immobilized onto the dimer acid‐co‐alkyl polyamine after activation with 1,2‐diamine ethane and 1,3‐diamine propane. The effects of pH, temperature, substrate concentration, and storage stability on free and immobilized invertase were investigated. Kinetic parameters were calculated as 18.2 mM for Km and 6.43 × 10?5 mol dm?3 min?1 for Vmax of free enzyme and in the range of 23.8–35.3 mM for Km and 7.97–11.71 × 10?5 mol dm?3 min?1 for Vmax of immobilized enzyme. After storage at 4°C for 1 month, the enzyme activities were 21.0 and 60.0–70.0% of the initial activity for free and immobilized enzyme, respectively. The optimum pH values for free and immobilized enzymes were determined as 4.5. The optimum temperatures for free and immobilized enzymes were 45 and 50°C, respectively. After using immobilized enzyme in 3 days for 43 times, it showed 76–80% of its original activity. As a result of immobilization, thermal and storage stabilities were increased. The aim of this study was to increase the storage stability and reuse number of the immobilized enzyme and also to compare this immobilization method with others with respect to storage stability and reuse number. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1526–1530, 2004  相似文献   

7.
The natural silk sericin, recovered from Bombyx mori silk waste by degumming and degrading, is a water‐soluble peptide with different molecular masses, ranging from 20 to 60 kDa. It is composed of 15 sorts of amino acids, among which the polar amino acids with hydroxyl, carboxyl and amino groups such as aspartic acid, serine and lysine account for 72%. The covalent attachment of the silk sericin peptides to L ‐asparaginase (ASNase) produces silk sericin peptides–L ‐asparaginase (SS–ASNase) bioconjugates that are active, stable, have a lower immune response, and have extended half‐lives in vitro in human serum. The modified enzyme coupled with sericin protein retains 55.8% of the original activity of the native enzyme. The optimal pH of SS–ASNase derivatives shifts considerably, to 5.0 in comparison with pH 6.0–8.0 of the native form. The thermostability and resistance to trypsin digestion of the modified enzyme are greatly enhanced as compared with ASNase alone. The Michaelis constant (Km) of SS–ASNase is 65 times lower than that of the enzyme alone. This suggests that the affinity of the enzyme to its substrate L ‐asparagine greatly increases when bioconjugated with silk sericin. The in vivo experiments also show that the silk sericin peptides have no immunogenicity, and the antigenicity of the enzyme is obviously decreased when coupled covalently with the silk sericin peptides. Copyright © 2005 Society of Chemical Industry  相似文献   

8.
Glucoamylase was immobilized on acid activated montmorillonite clay via two different procedures namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, NMR and N2 adsorption measurements and the activity of immobilized glucoamylase for starch hydrolysis was determined in a batch reactor. XRD shows intercalation of enzyme into the clay matrix during both immobilization procedures. Intercalation occurs via the side chains of the amino acid residues, the entire polypeptide backbone being situated at the periphery of the clay matrix. 27Al NMR studies revealed the different nature of interaction of enzyme with the support for both immobilization techniques. N2 adsorption measurements indicated a sharp drop in surface area and pore volume for the covalently bound glucoamylase that suggested severe pore blockage. Activity studies were performed in a batch reactor. The adsorbed and covalently bound glucoamylase retained 49% and 66% activity of the free enzyme respectively. They showed enhanced pH and thermal stabilities. The immobilized enzymes also followed Michaelis–Menten kinetics. K m was greater than the free enzyme that was attributed to an effect of immobilization. The immobilized preparations demonstrated increased reusability as well as storage stability.  相似文献   

9.
The preparation of chitosan‐coated magnetic nanoparticles (MNPs) and covalent immobilization of α‐amylase for starch hydrolysis was investigated. Surface morphology, chemical composition, and structural characteristics of the MNPs were analyzed by scanning electron microscopy, energy dispersion spectrometry, and X‐ray diffractometry, respectively. Surface functional groups of MNPs, chitosan‐coated MNPs, and α‐amylase‐immobilized MNPs were characterized by Fourier transform infrared spectroscopy. Response surface methodology based on three levels was implemented to optimize three immobilization conditions and a regression model was developed. α‐Amylase‐immobilized MNPs provided better stability towards pH and temperature. The prepared thermostable nanobiocatalyst is well‐suited for industrial processes involving starch hydrolysis.  相似文献   

10.
Multi‐walled carbon nanotube was modified with polymethyl methacrylate (MWCNT‐PMMA) by in situ solution radical polymerization in the presence of 2,2′‐Azobis (isobutyronitrile) as an initiator. The products with different addition of methyl methacrylate (MMA) were pressed into slices to prepare specimens for electrical conductivity testing. It was found that the MWCNT‐PMMA nanocomposites demonstrate excellent electrical conductivity. To investigate the microsphere morphology and the colloidal surfactant of MWCNTs in MWCNT‐PMMA composites, samples were submitted to scanning electron microscopy and transmission electron microscopy. The thermogravimetric analysis of the prepared composites confirmed that MWCNTs as a thermal stabilizer for PMMA, which could have a wide range of potential applications, such as in catalysts, sensors, environmental remediation, and energy storage. Two series of poly(lactic acid) (PLA) based biocomposites with different MMA additions and MWCNT‐PMMA composites contents were prepared with twin‐screw extruding and injection molding. The results show the mechanical properties changed a little with the MMA and MWCNT‐PMMA composites contents increasing, which suggested the well compatibility between MWCNT‐PMMA composites and PLA. POLYM. COMPOS., 37:503–511, 2016. © 2014 Society of Plastics Engineers  相似文献   

11.
The immobilization procedure of UV-curing coating is simple and causes less loss of enzymatic activity. UV-curable methacrylated/fumaric acid modified cycloaliphatic epoxide is here proposed as a rigid support material for covalent immobilization of α-amylase. The immobilized enzyme is analyzed in terms of bioactivity retention as a function of repeated use ability, pH, storage, as well as stability under various experimental conditions, taking starch as a substrate. The properties of immobilized enzyme were also compared with those of the free enzyme. The highest activity of free enzyme was obtained at pH 7.0 while this value was shifted to pH 7.5 for immobilized system. Optimum catalytic activity was observed at 30 °C, for both free and immobilized enzyme; however, the immobilized enzyme had a higher activity than the free one. The immobilized enzyme that was used 35 times in 8 h in repeated batch experiments demonstrated that about 73% of the enzyme activity was retained. The free enzyme lost all its activity with in 15 days. The retained activity of immobilized enzyme was found to be around 80%. The amount of bound α-amylase was found 94 mg per gram polymeric support material.  相似文献   

12.
Poly(methyl methacrylate)/poly(styrene‐co‐acrylonitrile) (PMMA/SAN) blends, with varying concentrations, were prepared by melt‐mixing technique. The miscibility is ensured by fixing the acrylonitrile (AN) content of styrene acrylonitrile (SAN) as 25% by weight. The blends were transparent as well. The Fourier transform infrared spectroscopic (FTIR) studies did not reveal any specific interactions, supporting the well accepted ‘copolymer repulsion effect’ as the driving mechanism for miscibility. Addition of SAN increased the stability of PMMA towards ultraviolet (UV) radiations and thermal degradation. Incorporation of even 0.05% by weight of multi‐walled carbon nanotubes (MWCNTs) significantly improved the UV absorbance and thermal stability. Moreover, the composites exhibited good strength and modulus. However, at higher concentrations of MWCNTs (0.5 and 1% by weight) the thermo‐mechanical properties experienced deterioration, mainly due to the agglomeration of MWCNTs. It was observed that composites with 0.05% by weight of finely dispersed and well distributed MWCNTs provided excellent protection in most extreme climatic conditions. Thus, PMMA/SAN/MWCNTs composites can act as excellent light screens and may be useful, as cost‐effective UV absorbers, in the outdoor applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43628.  相似文献   

13.
BACKGROUND: A malto‐oligosaccharide forming α‐amylase from Bacillus subtilis KCC103 immobilized in calcium alginate beads was repeatedly used in batch processes of starch hydrolysis. The degree of starch degradation and operational stability of the immobilized system were optimized by varying the physical characteristics and composition of the beads. The products formed from hydrolysis of various starches by α‐amylase immobilized in different supports were analyzed. RESULTS: Immobilized beads prepared from 3% (w/v) alginate and 4% (w/v) CaCl2 were suitable for up to 10 repeated uses, losing only 25% of their efficiency. On addition of 1% silica gel to alginate prior to gelation, the operational stability of the immobilized enzyme was enhanced to 20 cycles of operation, retaining > 90% of the initial efficiency. Distribution of malto‐oligosaccharides in the starch hydrolyzate depended on the type of starch, reaction time and mode of immobilization. Soluble starch and potato starch formed a wide range of malto‐oligosaccharides (G1–G5). Starches from wheat, rice and corn formed a narrow range of smaller oligosaccharides (G1–G3) as the major products. CONCLUSION: The immobilized beads of α‐amylase from KCC103 prepared from alginate plus silica gel showed high efficiency and operational stability for hydrolysis of starch. This immobilized system is useful for production of malto‐oligosaccharides applied in the food and pharmaceutical industries. Since this KCC103 amylase can be produced at low cost utilizing agro‐residues in a short time and immobilized enzyme can be recycled, the overall cost of malto‐oligosaccharide production would be economical for industrial application. Copyright © 2008 Society of Chemical Industry  相似文献   

14.
Cathepsin B (EC 3.4.22.1), purified from goat brain, was immobilized in calcium alginate beads in the presence of bovine serum albumin. The immobilized enzyme retained ∼63% of the original activity and could be used for seven successive batch reactions with retention of 22–30% of the initial activity. Immobilized cathepsin B hydrolysed α-N-benzoyl-D ,L -arginine-β-naphthylamide (BANA) maximally at pH 5·5, exhibiting a shift of 0·5 pH unit from that of the soluble enzyme (pH optima 6·0). It showed enhanced stability in acidic as well as alkaline environments in comparison to the free enzyme. The optimal temperature and thermal stability were not altered significantly after immobilization. The Km value for the immobilized enzyme was two-fold higher than for the soluble enzyme.  相似文献   

15.
BACKGROUND: Immobilized enzymes provide many advantages over free enzymes including repeated or continuous reuse, easy separation of the product from reaction media, easy recovery of the enzyme, and improvement in enzyme stability. In order to improve catalytic activity of laccase and increase its industrial application, there is great interest in developing novel technologies on laccase immobilization. RESULTS: Magnetic Cu2+‐chelated particles, prepared by cerium‐initiated graft polymerization of tentacle‐type polymer chains with iminodiacetic acid (IDA) as chelating ligand, were employed for Pycnoporus sanguineus laccase immobilization. The particles showed an obvious high adsorption capacity of laccase (94.1 mg g?1 support) with an activity recovery of 68.0% after immobilization. The laccase exhibited improved stability in reaction conditions over a broad temperature range between 45 °C and 70 °C and an optimal pH value of 3.0 after being adsorbed on the magnetic metal‐chelated particles. The value of the Michaelis constant (Km) of the immobilized laccase (1.597 mmol L?1) was higher than that of the free one (0.761 mmol L?1), whereas the maximum velocity (Vmax) was lower for the adsorbed laccase. Storage stability and temperature endurance of the immobilized laccase were found to increase greatly, and the immobilized laccase retained 87.8% of its initial activity after 10 successive batch reactions. CONCLUSION: The immobilized laccase not only can be operated magnetically, but also exhibits remarkably improved catalytic capacity and stability properties for various parameters, such as pH, temperature, reuse, and storage time, which can provide economic advantages for large‐scale biotechnological applications of laccase. Copyright © 2007 Society of Chemical Industry  相似文献   

16.
Microporous poly(2‐hydroxyethyl methacrylate) (pHEMA) membrane was prepared by UV‐initiated photopolymerization. The spacer arm (i.e., hexamethylene diamine) was attached covalently and then invertase was immobilized by the condensation reaction of the amino groups of the spacer arm with carboxyl groups of the enzyme in the presence of carbodiimides. The values of the Michael's constant Km of invertase were significantly larger (ca. 2.5 times) upon immobilization, indicating decreased affinity by the enzyme for its substrate, whereas Vmax was smaller for the immobilized invertase. Immobilization improved the pH stability of the enzyme as well as its temperature stability. Thermal stability was found to increase with immobilization and at 70°C the half times for the activity decay were 12 min for the free enzyme and 41 min for the immobilized enzyme. The immobilized enzyme activity was found to be quite stable in repeated experiments. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1685–1692, 2000  相似文献   

17.
Enzyme hydrolysis with immobilized neutral protease was carried out to produce low molecular weight chitosan (LMWC) and chito‐oligomers. Neutral protease was immobilized on (CS), carboxymethyl chitosan (CMCS), and N‐succinyl chitosan (NSCS) hydrogel beads. The properties of free and immobilized neutral proteases on chitosaneous hydrogel beads were investigated and compared. Immobilization enhanced enzyme stability against changes in pH and temperature. When the three different enzyme supports were compared, the neutral protease immobilized on CS hydrogel beads had the highest thermal stability and storage stability, and the enzyme immobilized on NSCS hydrogel beads had the highest activity compared to those immobilized on the other supports, despite its lower protein loading. Immobilized neutral protease on all the three supports had a higher Km (Michaelis‐Menten constant) than free enzyme. The Vmax (maximum reaction velocity) value of neutral protease immobilized on CS hydrogel beads was lower than the free enzyme, whereas the Vmax values of enzyme immobilized on CMCS and NSCS hydrogel beads were higher than that of the free enzyme. Immobilized neutral protease on CS, CMCS, and NSCS hydrogel beads retained 70.4, 78.2, and 82.5% of its initial activity after 10 batch hydrolytic cycles. The activation energy decreased for the immobilization of neutral protease on chitosaneous hydrogel beads. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3743–3750, 2006  相似文献   

18.
Porcine liver esterase was entrapped in natural polysaccharides K‐carrageenan and retention of its activity was determined using p‐nitrophenyl acetate as the substrate. The optimum pH for esterase activity of entrapped enzyme showed a little shift towards acidic side. Immobilized enzyme showed improved thermal and storage stability. The entrapped esterase retained 50% of its activity after eight repetitive cycles. Michaelis constant Km for the free and entrapped enzymes was almost same indicting no conformational change during immobilization. Maximum velocity Vmax was observed to decrease on immobilization. The free and entrapped esterase was used for selective hydrolysis of methyl 2‐acetoxybenzoate to methyl 2‐hydroxybenzoate in batch process as well as in a fixed bed reactor. The hydrolysis was observed to be 99% within 2 h for free as well as immobilized enzyme in batch process. The rate of hydrolysis was found to depend on pH. The turn over number of selective hydrolysis in batch and fixed bed reactor was 3.08 × 106 and 1.19 × 107, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
以凹土颗粒稳定的Pickering乳液为模板聚合有机/无机复合微球,并以此为载体固定化脂肪酶,当脂肪酶浓度为0.020wt%,固定化温度为45 ℃及pH=7.4的条件下,固定化效果较好,酶活达到最大.脂肪酶固定化后显示出较好的热稳定性、储存稳定性,重复使用三次后酶活仍与游离酶的初始酶活相近.从而为酶的固定化的提供了一条新的途径.  相似文献   

20.
BACKGROUND: This paper focuses on the development of temperature induced phase transition hydrogels based on poly(N‐isopropylocrylamide (PNIPA) copolymers and their application as an immobilization matrix for biocatalysts. RESULTS: PNIPA‐co‐AAc and PNIPA‐co‐MAAc hydrogels were synthesized with different comonomer concentrations and analysed. In order to evaluate the capacity of hydrogels to take up or to release liquids the mass exchange capacity is introduced. In the presented work mass exchange capacities up to 22.4 were realized. To enhance the mechanical stability, composites of hydrogels and cellulosic fleeces were prepared. The enzyme Lipozyme ® TL 100 L (Thermomyces languniosa Lipase) was successfully inserted into the hydrogels and into the hydrogel composites. Lipase‐catalysed transesterification of rapeseed oil with ethanol to the corresponding ethyl ester was investigated to prove the activity of immobilized enzyme and thus, the concept. The activity was found to be similar to that of free enzyme. CONCLUSION: Smart hydrogel composites were used for the transesterification of oil. Based on the results obtained, reversible loadable and mechanical stable hydrogel composites could be developed for continuous working reactor concepts. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号