首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the effect of storage time at room temperature on the melt viscosity, thermal, and tensile properties of epoxidized soybean oil plasticized poly(lactic acid) (PLA) films manufactured through a cast extrusion process. Infrared results indicate that plasticizer migration to the surface of the film occurred after only 30 days of storage, which significantly affected the performance of plasticized films. While the melt viscosity, glass transition temperature, degree of crystallinity, tensile strength, and modulus increased, the elongation at break and energy to break decreased with storage time up to 30 days and all properties remained constant thereafter. However, the ability of stored plasticized film to cold crystallize remained unaffected since both the cold crystallization temperature and melting temperature were not affected during storage. Although plasticized film lost some flexibility after only 30 days of storage due to plasticizer migration to the surface of the film, sufficient plasticization performance still remained in plasticized PLA films for flexible packaging application even after a long storage period at ambient conditions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43201.  相似文献   

2.
Acetyl tri‐n‐butyl citrate (ATBC) and poly(ethyleneglycol)s (PEGs) with different molecular weights (from 400 to 10000) were used in this study to plasticize poly(L‐lactic acid) (PLA). The thermal and mechanical properties of the plasticized polymer are reported. Both ATBC and PEG are effective in lowering the glass transition (Tg) of PLA up to a given concentration, where the plasticizer reaches its solubility limit in the polymer (50 wt % in the case of ATBC; 15–30 wt %, depending on molecular weight, in the case of PEG). The range of applicability of PEGs as PLA plasticizers is given in terms of PEG molecular weight and concentration. The mechanical properties of plasticized PLA change with increasing plasticizer concentration. In all PLA/plasticizer systems investigated, when the blend Tg approaches room temperature, a stepwise change in the mechanical properties of the system is observed. The elongation at break drastically increases, whereas tensile strength and modulus decrease. This behavior occurs at a plasticizer concentration that depends on the Tg‐depressing efficiency of the plasticizer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1731–1738, 2003  相似文献   

3.
Poly(lactic acid) (PLA) has received great attention recently due to its good physical and mechanical properties such as high tensile strength and modulus, good processability and biodegradability. In this study, low molecular weight poly(ethylene glycol) (PEG) and epoxidized palm oil (EPO) were used as hybrid plasticizers to improve toughness and ductility of PLA. Using the solubility parameter, a tentative evaluation of the hybrid plasticizer that could act as the most effective plasticizer for PLA has been performed and the obtained results have been corroborated with the materials physical properties. Excellent plasticizing effect was obtained by hybrid plasticizer PEG:EPO with ratio 2:1. Addition of PEG:EPO (2:1) hybrid plasticizer to PLA shows a significant improvement of 12,402%, compared to neat PLA. The improvement in flexibility and decrease in rigidity for the plasticized PLA is well evidenced by lower glass transition temperature (Tg) and tensile modulus values. In relation to the thermal stability, a decrease in thermal properties of the hybrid plasticized PLA was observed due to the volatility of the plasticizers. Scanning electron microscopy (SEM) shows that the hybrid plasticizer was turned PLA's smooth surface to fibrous structure and rough fracture surface. POLYM. ENG. SCI., 56:1169–1174, 2016. © 2016 Society of Plastics Engineers  相似文献   

4.
Plasticized poly(lactic acid) (PLA)‐based nanocomposites filled with graphene nanoplatelets (xGnP) and containing poly(ethylene glycol) (PEG) and epoxidized palm oil (EPO) with ratio 2 : 1 (2P : 1E) as hybrid plasticizer were prepared by melt blending method. The key objective is to take advantage of plasticization to increase the material ductility while preserving valuable stiffness, strength, and toughness via addition of xGnP. The tensile modulus of PLA/2P : 1E/0.1 wt % xGnP was substantially improved (30%) with strength and elasticity maintained, as compared to plasticized PLA. TGA analysis revealed that the xGnP was capable of acting as barrier to reduce thermal diffusion across the plasticized PLA matrix, and thus enhanced thermal stability of the plasticized PLA. Incorporation of xGnP also enhanced antimicrobial activity of nanocomposites toward Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, and Listeria monocytogenes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41652.  相似文献   

5.
The effect of polyethylene glycol (PEG) on the mechanical and thermal properties of poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blends was examined. Overall, it was found that PEG acted as an effective plasticizer for the PLA phase in these microphase‐separated blends, increasing the elongation at break in all blends and decreasing the Tg of the PLA phase. Significant effects on other properties were also observed. The tensile strength and Young's modulus both decreased with increasing PEG content in the blends. In contrast, the elongation at break increased with the addition of PEG, suggesting that PEG acted as a plasticizer in the polymer blends. Scanning electron microscope images showed that the fracture mode of PLA changed from brittle to ductile with the addition of PEG in the polymer blends. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43044.  相似文献   

6.
Tri‐(butanediol‐monobutyrate) citrate (TBBC) as a new plasticizer for poly(lactic acid) (PLA) was synthesized via a two‐step esterification. The chemical structure of TBBC was characterized by 1H‐nuclear magnetic resonance. The studies on solubility parameters, transparence, and storage stability indicated the good miscibility between PLA and TBBC. The glass transition, crystallization, thermal, and mechanical properties of PLA plasticized by TBBC were evaluated. With an increase in TBBC content, the glass transition temperature (Tg), melting point (Tm), and the cold crystallization temperature (Tcc) of plasticized PLA gradually shifted to a lower temperature. The elongation at break and flexibility were greatly improved by the addition of TBBC. After 30 days of storage, PLA plasticized with up to 20 wt% of TBBC exhibited good storage stability and remained the original transparence and mechanical properties. The flexibility of PLA/TBBC films can be tuned by changing TBBC content. The corresponding crystalline morphology and structure were investigated by Polarizing optical microscope and X‐ray diffraction as well. This study revealed that TBBC was miscible with PLA and may therefore be a promising plasticizer for PLA‐based packaging materials. POLYM. ENG. SCI., 55:205–213, 2015. © 2014 Society of Plastics Engineers  相似文献   

7.
In this article, the spherulitic morphology and growth rate of the neat and plasticized poly(lactic acid) (PLA) with triphenyl phosphate (TPP) were compared and analyzed by polarizing optical microscopy with hot stage at a temperature range of 100?142°C. The spherulitic morphology of the neat PLA underwent a series of changes such as the typical Maltese Cross at less than 132°C, the disappearance of the Maltese Cross at 133°C, the irregular and distorted spherulites at higher than 134 and 142°C, respectively. For plasticized PLA, the spherulitic morphology exhibited the same changes as neat PLA, but these changes were shifted to lower temperature when compared with neat PLA. In the case of the spherulitic growth, neat PLA had the maximum value of 0.28 μm/s at 132°C, and plasticized PLA had higher values than that of neat PLA. Further analysis based on the Lauritzen–Hoffman theory was presented and results showed that the values of nucleation parameter Kg increased with TPP content. The crystallization behavior of PLA was analyzed by differential scanning calorimetry and wide‐angle X‐ray diffraction. The results showed that the degree of crystallinity of plasticized PLA markedly increased when compared with neat PLA sharply with the incorporation of plasticizer. The crystallization kinetics for the neat and plasticized PLA under isothermal crystallization at 114°C was described by the Avrami equation and the Avrami exponent is close to 2, implying that the crystallization mechanism did not change. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Nanocomposites of poly(lactide) (PLA) and the PLA plasticized with diglycerine tetraacetate (PL‐710) and ethylene glycol oligomer containing organo‐modified montmorillonites (ODA‐M and PGS‐M) by the protonated ammonium cations of octadecylamine and poly(ethylene glycol) stearylamine were prepared by melt intercalation method. In the X‐ray diffraction analysis, the PLA/ODA‐M and plasticized PLA/ODA‐M composites showed a clear enlargement of the difference of interlayer spacing between the composite and clay itself, indicating the formation of intercalated nanocomposite. However, a little enlargement of the interlayer spacing was observed for the PLA/PGS‐M and plasticized PLA/PGS‐M composites. From morphological studies using transmission electron microscopy, a finer dispersion of clay was observed for PLA/ODA‐M composite than PLA/PGS‐M composite and all the composites using the plasticized PLA. The PLA and PLA/PL‐710 composites containing ODA‐M showed a higher tensile strength and modulus than the corresponding composites with PGS‐M. The PLA/PL‐710 (10 wt %) composite containing ODA‐M showed considerably higher elongation at break than the pristine plasticized PLA, and had a comparable tensile modulus to pure PLA. The glass transition temperature (Tg) of the composites decreased with increasing plasticizer. The addition of the clays did not cause a significant increase of Tg. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

9.
Films of neat and plasticized biodegradable poly(lactic acid) (PLA) matrices containing anionic conjugated polyelectrolytes, poly[9,9‐bis(4‐phenoxybutylsulfonate)]fluorene‐2,7‐diyl‐alt‐arylenes, with 1,4‐phenylene and 4,4″‐p‐terphenylene, respectively, as arylene groups or a neutral poly(9,9‐dialkylfluorene) for comparison were prepared by solution casting. These films were characterized using differential scanning calorimetry, thermogravimetry, scanning electron microscopy and fluorescence spectroscopy. In addition, the effects of plasticizer on the thermal properties and the oxygen permeability of the PLA films were measured through the oxygen transmission rate. Results show that it is possible to obtain thin, optically transparent and luminescent films with potential in oxygen sensing, exhibiting good thermal and photochemical stability. At high polyelectrolyte content, evidence is found for phase separation and aggregate formation and it is no longer possible to obtain completely homogeneous films. The possibility of incorporating the cationic metal complex tris(2,2′‐bipyridyl)ruthenium(II) into plasticized PLA films containing conjugated polyelectrolytes for dual‐wavelength ratiometric luminescence sensing is also discussed. Copyright © 2012 Society of Chemical Industry  相似文献   

10.
The objectives of the presented work were to investigate films based on polylactic acid (PLA) and polyethylene glycol (PEG) in order to improve ductility and weldability of PLA films. The effect of plasticizer amount on the thermal, rheological, and mechanical properties of PLA plasticized films was investigated. The PEG content does affect the glass transition and the cold crystallization temperature of PLA in blends, while the melting temperature was not affected by the addition of PEG. The complex viscosity of the neat PLA granules and of plasticized films showed strong temperature and angular velocity dependence. The Young's modulus and tensile strength of plasticized films were improved with increasing plasticizer concentration, while the elongation at break stays rather constant. Plasticized PLA films were furthermore heat welded. These investigations showed that plasticized PLA films can be welded by heat welding. The obtained weld strength is strongly depending on the PEG amount as well as on selected welding parameters. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40394.  相似文献   

11.
The use of maleinized linseed oil (MLO) as a potential biobased plasticizer for poly(lactic acid) (PLA) industrial formulations with improved toughness was evaluated. MLO content varied in the range 0–20 phr (parts by weight of MLO per hundred parts by weight of PLA). Mechanical, thermal and morphological characterizations were used to assess the potential of MLO as an environmentally friendly plasticizer for PLA formulations. Dynamic mechanical thermal analysis and differential scanning calorimetry revealed a noticeable decrease in the glass transition temperature of about 6.5 °C compared to neat PLA. In addition, the cold crystallization process was favoured with MLO content due to the increased chain mobility that the plasticizer provides. PLA toughness was markedly improved in formulations with 5 phr MLO, while maximum elongation at break was obtained for PLA formulations plasticized with MLO content in the range 15–20 phr. Scanning electron microscopy revealed evidence of plastic deformation. Nevertheless, phase separation was detected in plasticized PLA formulations with high MLO content (above 15–20 phr MLO), which had a negative effect on overall toughness. © 2017 Society of Chemical Industry  相似文献   

12.
Synthesized polylactides (PLA) with different D ‐isomer contents in the polymer chain were melt‐blended with a series of “green” plasticizers by extrusion. Mechanical and thermal properties as well as the morphology of the plasticized materials were characterized to demonstrate how the combination of PLA with different D‐contents and plasticizer controls the material properties. After addition of acetyl tributyl citrate (ATC), the elongation at break for PLA with a low D‐isomer content was twice as high as that for PLAs with high D‐isomer contents. Similar variations in the plasticization effect on the PLAs were also observed with the other plasticizers used, glyceryl triacetate (GTA), glycerol trihexanoate (GTH) and polyethylene glycol (PEG). In order to continue with the development of renewable polymers in packaging applications, the interrelation between a plasticizer and a specific polymer needs to be understood. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2962–2970, 2013  相似文献   

13.
Poly(lactic acid) PLA was plasticized with low molecular weight poly(ethylene glycol) PEG‐200 to improve the ductility of PLA, while maintaining the plasticizer content at maximum 10 wt%. Low molecular weight of PEG enables increased miscibility with PLA and more efficient reduction of glass transition temperature (Tg). This effect is enhanced not only by the low molecular weight but also by its higher content. The tensile properties demonstrated that the addition of PEG‐200 to PLA led to an increase of elongation at break (>7000%), but a decrease of both tensile strength and tensile modulus. The plasticization of the PLA with PEG‐200 effectively lowers Tg as well as cold‐crystallization temperature, increasing with plasticizer content. SEM micrographs reveal plastic deformation and few long threads of a deformed material are discernible on the fracture surface. The use of low molecular weight PEG‐200 reduces the intermolecular force and increases the mobility of the polymeric chains, thereby improving the flexibility and plastic deformation of PLA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4576–4580, 2013  相似文献   

14.
BACKGROUND: Amorphous poly(lactic acid) (PLA) was plasticized with two polyadipates with different molar masses. Some physical properties were studied over time to evaluate the stability of these blends. The aim of this study was to improve PLA ductility and consider the feasibility of its use in flexible films for food packaging. RESULTS: The addition of polyadipates caused a decrease of the glass transition temperature (Tg) and an increase of PLA chain mobility. Samples with Tg values above the storage temperature suffered physical ageing with a reduction in free volume. All the unaged blends were mainly amorphous, but samples with Tg below the storage temperature developed crystallinity during ageing leading to phase separation. Ductile properties of films improved with plasticizer content immediately after blending, but there was a deterioration in such properties upon ageing due to matrix densification and crystallization of PLA chains. CONCLUSION: PLA can be efficiently plasticized by polyadipates and the results have shown that some of the prepared films remain flexible with no phase separation after 150 days. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
Film extrusion and welding of biodegradable polymer films are important processes that must be considered in the development of compostable packaging materials. Film extrusion of poly(lactic acid) (PLA) has proved to be rather difficult because of its brittleness, but the flexibility of PLA can be improved by incorporation of a plasticizer in the material. PLA was plasticized with triacetine (TAc) and tributyl citrate (TbC). The blended materials and neat PLA were film extruded and the films were welded with constant heat (CH) welding. The films were analyzed by means of gas chromatography (GC), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), gel permeation chromatography (GPC), contact angle measurements, and tensile testing. Storage of the plasticized films resulted in an increased crystallinity and changes in the film properties, rendering CH welding difficult. The welding process had no influence on thermal properties, such as cold crystallization temperature, melting temperature, crystallization temperature, and degree of crystallinity, of neat PLA but caused significant changes in the crystallinity of the plasticized materials. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3239–3247, 2003  相似文献   

16.
In this study, melt intercalation method is applied to prepare poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG)‐plasticized PLA nanocomposite films including 0, 3, and 5% organoclay (Cloisite 30B) using a laboratory scale compounder, which is connected to a microcast film device. To evaluate the nanomorphology and the dispersion state of the clays, X‐ray diffraction (XRD) and transmission electron microscopy (TEM) are conducted. Tensile tests are performed to characterize the mechanical behavior of the films. Biodegradation rate is determined by degradation tests in composting medium. Differential scanning calorimeter (DSC) is applied to observe the thermal behavior of the films. XRD and TEM show that the exfoliation predominantly occurrs in plasticized PLA nanocomposites, whereas unexfoliated agglomerates together with exfoliated clays are observed in the nonplasticized PLA. Tensile tests indicate that the addition of 3% clay to the neat‐PLA does not affect the strength; however, it enhances the modulus of the nanocomposites in comparison to neat‐PLA. Incorporation of 3% clay to the plasticized PLA improves the modulus with respect to PLA/PEG; on the other hand, the strain at break value is lowered ~ 40%. The increase in the rate of biodegradation in composting medium is found as in the order of PLA > PLA/PEG > 3% Clay/PLA/PEG > 5% Clay/PLA/PEG > 3% Clay/PLA. DSC analysis shows that the addition of 3% clay to the neat PLA results in an increase in Tg. The addition of 20% PEG as a plasticizer to the neat‐PLA decreases Tg about 30°C, however incorporation of clays increases Tg by 4°C for the plasticized PLA. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The use of bio‐based polymeric plasticizers could expand the application range of plasticized poly(vinyl chloride) (PVC) materials. In this study, a novel bio‐based polyester plasticizer, poly(glutaric acid‐glyceryl monooleate) (PGAGMO), was synthesized from glutaric acid and glyceryl monooleate via a direct esterification and polycondensation route. The polyester plasticizer was characterized by gel permeation chromatography, 1H‐nuclear magnetic resonance, and Fourier‐transform infrared spectroscopy. The plasticizing effect of PGAGMO on PVC was investigated. The melting behavior, thermal properties, and mechanical properties of PVC blends were studied. The results showed that the PGAGMO could improve the thermal stability and reduce the glass transition temperature of PVC blends; when phthalates were substituted by PGAGMO in PVC blends, the thermal degradation temperature of PVC blends increased from 251.1°C to 262.7°C, the glass transaction temperature decreased from 49.1°C to 40.2°C, the plasticized PVC blends demonstrated good compatibility, and the decrement of the torque and the melt viscosity of PVC blends were conducive to processing. All results demonstrated that the PGAGMO could partially substitute for phthalates as a potential plasticizer of PVC. J. VINYL ADDIT. TECHNOL., 22:514–519, 2016. © 2015 Society of Plastics Engineers  相似文献   

18.
MAS 13C‐NMR measurements were used for the study of morphology and molecular mobility in amorphous quenched and triacetine‐plasticized PLA samples and PLA samples which underwent cold crystallization during annealing at 80 and 100 °C. The single pulse MAS 13C‐NMR spectra indicate that plasticizer promotes cold crystallization which results in the decrease of the temperature of crystallization and formation of more perfect crystalline domains. The T1(13C) spin‐lattice relaxation times show that the presence of plasticizer molecules leads to an increase of local mobility in PLA chains but plasticized PLA after annealing at 100 °C shows more rigid structure. The series of broad line 1H‐NMR spectra performed at temperatures up to 100 °C provided information on the changes in relaxation processes and morphology of the studied samples. The interpretation of the results obtained using the techniques of NMR spectroscopy were supported by WAXD and DSC measurements. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43517.  相似文献   

19.
The aim of this study is to improve the flame resistance and toughness of poly(lactic acid) (PLA) with the addition of low amount of flame retardant fillers and plasticizer simultaneously. Poly(ethylene glycol) (PEG) was used as plasticizer for PLA. Ammonium polyphosphate, boron phosphate, and tri‐phenyl phosphate (TPP) were used as flame retardant additives. Among these flame retardant additives, boron phosphate was synthesized from its raw materials by using microwave heating technique. Characterization of PLA/PEG‐based flame retardant composites was performed by conducting tensile, impact, differential scanning calorimeter, thermal gravimetric analysis, scanning electron microscope, limiting oxygen index, and UL‐94 vertical burning tests. Mechanical tests showed that the highest tensile strength, impact strength, and elongation at break values were obtained with the addition of ammonium polyphosphate and TPP into PLA/PEG matrix, respectively. Scanning electron microscopy analysis of the composites exhibited that the more homogeneous filler distribution in the matrix was observed for TPP containing composite. The best flame retardancy performance was also provided by TPP when compared with the other flame retardant additives in the plasticized PLA‐based composites.  相似文献   

20.
Binary and ternary blends composed of poly(lactic acid) (PLA), starch, and poly(ethylene glycols) (PEGs) with different molecular weights (weight‐average molecular weights = 300, 2000, 4000, 6000, and 10, 000 g/mol) were prepared, and the plasticizing effect and miscibility of PEGs in poly(lactic acid)/starch (PTPS) or PLA were intensively studied. The results indicate that the PEGs were effective plasticizers for the PTPS blends. The small‐molecule plasticizers of PEG300 (i.e., the Mw of PEG was 300g/mol) and glycerol presented better plasticizing effects, whereas its migration and limited miscibility resulted in significant decreases in the water resistance and elongation at break. PEG2000, with a moderate molecular weight, was partially miscible in sample PTPS3; this led to better performance in water resistance and mechanical properties. For higher molecular weight PEG, its plasticization for both starch and PLA was depressed, and visible phase separation also occurred, especially for PTPS6. It was also found that the presence of PEG significantly decreased the glass‐transition temperature and accelerated the crystallization of the PLA matrix, depending on the PEG molecular weight and concentration. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41808.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号