首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 213 毫秒
1.
We demonstrate the use of innovative wetting method in prediction of the adhesion properties of biobased polymers for two‐component injection moulding, taking into account the acid–base surface properties of joined materials. The measurements were carried out in accordance with modified Berger method by calculation of the difference in shortened acidity parameter ΔDshort between hard and soft component. Correlation factors up to 0.99 were observed between ΔDshort and peel force. In comparison to results obtained by conventional wetting methods, high potential for the selection of components with high interface adhesion and for prediction of the functionality by the acid–base approach was demonstrated. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43048.  相似文献   

2.
In this work, poly(para‐phenylene terephthalamide) (PPTA)‐pulp was investigated in view of employment in functional paper‐based materials as reinforcement, bonding, and filling materials. The morphological characteristics, fibrillation degree and the role of PPTA‐pulp, the ratio of PPTA‐pulp to PPTA fiber on the mechanical properties, and paper formation uniformity of the functional base paper were discussed. The results showed that the ductile, rough, and highly fibrillating morphological characteristics of PPTA‐pulp are helpful to give rise to some distinctive properties such as wet‐machinability and reinforcement effects in composite materials. Fibrillation of PPTA‐pulp significantly contributes to generating more highly dispersed slender threadlike micro‐fibrils and improving the properties of base paper. This research suggested a significant reinforcement, bonding, and filling potential of PPTA‐pulp for the production of functional paper composite materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43209.  相似文献   

3.
Phthalonitrile‐based composites containing sodium montmorillonite (MMT0) and modified montmorillonites (MMT1 and MMT2) were prepared, respectively. The effect of functionalization, content and ball milling of the clay on the morphology, thermal mechanical, and thermal properties of the composites was thoroughly investigated by such methods as small angle X‐ray scattering, scanning electron microscopy, and dynamic, mechanical, and thermogravimetric analyses. FTIR and dynamic rheology measurements confirmed that the polymerization reaction of the PAEK‐CN prepolymer between individual clay layers had occurred and that intercalated tactoids and exfoliated/delaminated structures might have formed during the curing process. Small angle X‐ray scattering patterns reflected the increase of d‐spacing after clay modification and the subsequent possible exfoliation of the clay platelets within the phthalonitrile composites. Elevated heat distortion temperature and improved dynamic mechanical properties were observed for the PAEK‐CN/clay nanocomposites containing milled clay. Ball milling pristine clay improved the composite properties resulting from homogeneous dispersion to a certain extent, similar to the modified clay. In addition, composite properties depended on the content and modifier structures of the organoclays. POLYM. COMPOS., 37:3003–3014, 2016. © 2015 Society of Plastics Engineers  相似文献   

4.
A systematic study was performed on the combination of support properties and polydimethylsiloxane (PDMS) coating conditions for the lab‐scale preparation of a defect‐free, thin film composite membrane for organophilic pervaporation. Support layers having comparable surface porosities were prepared from three polymers with different chemical composition (PVDF, PSF, PI). Their exact role on the deposition of the PDMS coating (i.e., wetting and intrusion) and the final membrane performance (i.e., effect on mass transfer of the permeants) was studied. The crosslinking behavior of dilute PDMS solutions was studied by viscosity measurements to optimize the coating layer thickness, support intrusion and wetting. It was found essential to pre‐crosslink the PDMS solution for a certain time prior to the coating. Dip time for coating the PDMS solution on the supports was varied by using automated dip coating machine. The performance of the synthesized membranes was tested in the separation of ethanol/water mixtures by pervaporation. Both flux and selectivity of the membranes were clearly influenced by the support layer. Resistance of the support layers increased by increasing the polymer concentration in the casting solutions of the supports. Increasing the dip time of the PDMS coating solution led to increased selectivity of the composite membranes. Scanning Electron Microscopy analysis of the composite membranes showed that this leads to a minor increase in the thickness of the PDMS top layer. Top layer thickness increased linearly with the square root of the dip time (t0.5) at a constant withdrawal speed of the support. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43670.  相似文献   

5.
A series of copolymeric superabsorbent materials comprising polyacrylamide (PAM), polyvinyl alcohol (PVA) reinforced with variable wt% of modified clay were prepared. The copolymer/clay composite was characterized by Fourier transformed infrared, transmission electron microscopy, and scanning electron microscopy. The water absorbencies of poly(acrylamide‐co‐vinyl alcohol)/clay composites were measured by calculating their percentage swelling ratio. The effects of copolymerization, type of clay, and clay content on the water absorbencies were studied. The swelling was measured in acidic, alkaline, and saline condition to ensure its versatility. The results indicated a remarkable increase in swelling ratio by incorporation of modified clay having higher hydrophilicity and optimum clay loading. The poly(acrylamide‐co‐vinyl alcohol)/clay composite hydrogel was found to have better re‐swelling ability and water retention capacity compared to the virgin copolymer. The substantial enhancement of swelling properties enables the superabsorbent poly(acrylamide‐co‐vinyl alcohol)/clay suitable for agricultural and horticultural application. POLYM. COMPOS., 34:1794–1800, 2013. © 2013 Society of Plastics Engineers  相似文献   

6.
Clay containing polypropylene (PP) nanocomposites were prepared by direct melt mixing in a twin screw extruder using different types of organo‐modified montmorillonite (Cloisite 15 and Cloisite 20) and two masterbatch products, one based on pre‐exfoliated clays (Nanofil SE 3000) and another one based on clay–polyolefin resin (Nanomax‐PP). Maleic anhydride‐grafted polypropylene (PP‐g‐MA) was used as a coupling agent to improve the dispersability of organo‐modified clays. The effect of clay type and clay–masterbatch product on the clay exfoliation and nanocomposite properties was investigated. The effect of PP‐g‐MA concentration was also considered. Composite morphologies were characterized by X‐ray diffraction (XRD), field emission gun scanning electron microscopy (FEG‐SEM), and transmission electron microscopy (TEM). The degree of dispersion of organo‐modified clay increased with the PP‐g‐MA content. The thermal and mechanical properties were not affected by organo‐modified clay type, although the masterbatch products did have a significant influence on thermal and mechanical properties of nanocomposites. Intercalation/exfoliation was not achieved in the Nanofil SE 3000 composite. This masterbatch product has intercalants, whose initial decomposition temperature is lower than the processing temperature (T ~ 180°C), indicating that their stability decreased during the process. The Nanomax‐PP composite showed higher thermal and flexural properties than pure PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
The ultrafine n‐octadecane/silk composite fibers as form‐stable phase change materials were successfully developed by the emulsion‐electrospinning method. The effect of n‐octadecane content in the emulsion on the morphology and thermal energy storage capacity of the composite fibers were scientifically investigated. Scanning electron microscopy images show that the composite fibers display cylindrical shape with smooth surface and uniform diameter. Differential scanning calorimetry results demonstrate that the composite fibers exhibit reversible phase transition behavior, high thermal energy storage capacity, and good thermal reliability. Meanwhile, the composite fibers exhibit the capability to regulate their interior temperature as the ambient temperature alters according to the thermo‐infrared images. In addition, the composite fibers are friendly to the environment due to the biodegradability of silk. Therefore, the n‐octadecane /silk composite fibers have the great potential application of serving as form‐stable phase change materials for thermal energy storage and thermal regulation. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45538.  相似文献   

8.
The surfaces of glass fibers were sized by polyvinyl alcohol (PVA), polyester, and epoxy resin types in order to improve the mechanical interfacial properties of fibers in the unsaturated polyester matrix. The surface energetics of the glass fibers sized were investigated in terms of contact angle measurements using the wicking method based on the Washburn equation, with deionized water and diiodomethane as the wetting liquids. In addition, the mechanical behaviors of the composites were studied in the context of the interlaminar shear strength (ILSS), critical stress intensity factor (KIC), and flexural measurements. Different evolutions of the London dispersive and specific (or polar) components of the surface free energy of glass fibers were observed after different sizing treatments. The experimental result of the total surface free energies calculated from the sum of their two components showed the highest value in the epoxy‐sized glass fibers. From the measurements of mechanical properties of composites, it was observed that the sizing treatment on fibers could improve the fiber–matrix interfacial adhesion, resulting in improved final mechanical behaviors, a result of the effect of the enhanced total surface free energy of glass fibers in a composite system. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1439–1445, 2001  相似文献   

9.
Utilization of low‐value agricultural waste for polymer composite materials has great environmental and economical benefits. Sunflower head residue (SHR) as an agricultural waste may be used as a reinforcement in polymeric materials because of its fiber characteristics. In this work, composites of biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) and SHR were prepared via melt‐extrusion compounding. To improve interfacial compatibility, maleic anhydride (MA) grafted PBAT (PBAT‐g‐MA) was prepared and used as a compatibilizer for the PBAT/SHR composites. The effects of the concentrations of SHR and PBAT‐g‐MA on the morphology, mechanical properties, melt rheology, and water resistance of the composites were examined. Interfacial adhesion between phases in the PBAT/SHR composites was enhanced by the introduction PBAT‐g‐MA as interface‐strengthening agent, resulting in improved mechanical properties and moisture resistance of the composite. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44644.  相似文献   

10.
A novel procedure to synthesize in situ clay/nylon‐6 composite suspension was explored via anionic solution polymerization. The suspension was efficiently blended with water‐based epoxy resin using mechanical stirrer at room temperature. Hence, a 3‐component coating system was obtained consisting of nano‐clay, nylon‐6 and epoxy resin. Large number of coatings and films were prepared with variation in clay and nylon‐6 loading. Concentration of clay was found to have profound effect on crystallinity of nylon‐6, thereby affecting the overall properties of clay/nylon/epoxy composite. All the films were characterized for thermal and dynamic mechanical behavior using differential scanning calorimeter (DSC) and dynamic mechanical analysis (DMA). Lower amount of clay was found to increase the crystallinity of nylon‐6 which in turn increased the plasticization of epoxy resin indicated by reduction in Tg. A multiphase morphology with distinct amorphous and crystalline zones was observed under scanning electron microscopy (SEM). A remarkable symmetrical morphology with branched dendritic crystal structure was observed for few of the clay/nylon/epoxy system. POLYM. COMPOS., 37:2206–2217, 2016. © 2015 Society of Plastics Engineers  相似文献   

11.
Nanocomposites were produced from cotton with montmorillonite clay used as the nanofiller material. Three exfoliation and intercalation methods with different solvents and clay pretreatment techniques were tested for the production of these organic–inorganic hybrids. The method that resulted in superior clay–cotton nanocomposites used a clay pretreatment with 4‐methylmorpholine‐N‐oxide as the cotton solvent. The nanocomposites showed significant improvements in the thermal properties in comparison with unbleached cotton and cotton processed under the conditions for nanocomposite preparation. The degradation temperature of the nanocomposites increased by 45°C, and the char yields for some compositions were twice those of unbleached cotton. The crystalline melt of the materials decreased by 15°C. Future research will include the development of textiles based on these cotton–clay materials and testing for flame‐retardant properties and product strength. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2125–2131, 2004  相似文献   

12.
Polypropylene (PP) or modified PP is one of the most commonly used synthetic polymers for the development of materials in construction, automotive, packaging, and other applications. However, improvements of inherent mechanical, thermal, and morphological properties are required to transfer its potential into reality. In this context, some comparative study with talc and Moroccan clay were performed to improve the inherent properties of modified PP i.e., PP‐SEBS‐g‐MA matrix composite of PP‐SEBS‐g‐MA with different loadings of talc and Moroccan clays. All the composites samples were prepared by melt mixing method. Thermal and Mechanical properties of the composite sample were higher than unreinforced samples. Improvement of crystalinity, thermal stability, and rigidity was observed in the composite samples due to incorporation of the filler. Highest young modulus was observed in case of talc filled PP composites. It's observed from Tsai‐pagano model results that the young's modulus of talc still higher than that of both clay particles, but using the density of fillers, the results in terms of specific properties shown that the specific rigidity is comparable. In summary, it was examined the ability of Moroccan clay particles, as an alternative filler for PP composite compared with the traditional commercial reinforcements such as talc and mineral calcium carbonate. POLYM. COMPOS., 36:675–684, 2015. © 2014 Society of Plastics Engineers  相似文献   

13.
In this study, effect of duration of ultrasonication process on structural characteristics and barrier properties of solvent‐free castor oil‐based polyurethane (PU)/organically modified montmorillonite (OMMT) nanocomposites was investigated. A series of PU/OMMT composites were synthesized by in situ polymerization technique through an ultrasonication‐assisted process at various processing durations. Effect of ultrasonication duration on de‐agglomeration of clay stacks in castor oil dispersions was evaluated by optical microscopy, sedimentation test, and viscosity measurement. Wide angle X‐ray diffraction and Fourier‐transform infrared spectroscopy were employed to investigate the effect of processing time on degree of delamination of clay platelets and interfacial strength between clay layers and PU matrix. Also, surface morphology of the nanocomposites was analyzed by atomic force microscopy. The results showed that by increasing the ultrasonication time up to 60 min, the size of clay agglomerates decreased and the interlayer spacing of clay platelets increased. To evaluate the effect of ultrasonication duration on transport properties of the PU/OMMT composites, diffusion coefficient and permeability were determined through water uptake test. Electrochemical impedance spectroscopy was carried out to analyze the barrier properties and to evaluate the corrosion performance of these composite coatings on carbon steel panels. It was found that by increasing sonication time, the barrier property of nanocomposites against diffusion of water molecules improved, which is due to further separation of clay platelets, enhancement of the traveling pathways for water molecules and improvement of interactions between the two components. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Four quaternary ammonium salt monomers (2a–d) were synthesized from N,N‐dimethylaminoethyl methacrylate and subsequently polymerized to afford cationic polymers (3a–d). The synthesized monomers and polymers were characterized by Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopy. Molecular weights of the synthesized polymers were determined using gel permeation chromatography. Polymer/clay nanocomposites (4a–d) were prepared using solution‐intercalation method and characterized by FTIR, X‐ray diffraction, high‐resolution transmission electron microscopy, energy dispersive X‐ray, and thermogravimetric analysis. Data analysis showed that polymer/clay nanocomposites have intercalated structure. The dielectric properties of the polymer/clay nanocomposites were studied as a function of both temperature and frequency. POLYM. COMPOS., 37:2950–2959, 2016. © 2015 Society of Plastics Engineers  相似文献   

15.
The preparation and properties of nanocomposites, consisting of a poly(3‐Hydroxybutyrate‐co‐3‐hydroxyvalerate) and an organophilic clay are described. The effect of organophilic clay on the crystallization behavior of (PHBV) was studied. A differential scanning calorimeter (DSC) was used to monitor the energy of the crystallization process from the melt. During the crystallization process from the melt, the organophilic clay led to an increase in crystallization temperature (Tc) of PHBV compared with that for plain PHBV. During isothermal crystallization, dependence of the relative degree of crystallization on time was described by the Avrami equation. The addition of organophilic clay caused an increase in the overall crystallization rate of PHBV, but did not influence the mechanism of nucleation, and growth of the PHBV crystals and the increase caused by a small quantity of clay is move effective than that large one. The equilibrium melting temperature of PHBV was determined as 186°C. Analysis of kinetic data according to nucleation theories showed that the increase in crystallization rate of PHBV in the composite is due to the decrease in surface energy of the extremity surface. The mechanical test shows that the tensile strength of hybrid increased to 35.6 MPa, which is about 32% higher than that of the original PHBV with the incorporation of 3 wt % clay, and the tensile modulus was also increased. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 655–661, 2004  相似文献   

16.
Here we demonstrate that inkjet printing technology is capable of producing polyvinyl alcohol (PVOH) multilayer structures. PVOH water‐based inks were formulated with the addition of additives such as humectant and pigments. The intrinsic properties of the inks, such as surface tension, rheological behavior, pH, wetting, and time stability were investigated. The ink's surface tension was in the range 30–40 mN/m. All formulated inks displayed a pseudoplastic (non‐Newtonian shear thinning and thixotropic) behavior at low‐shear rates and a Newtonian behavior at high‐shear rates; were neutral solutions (pH7) and demonstrated a good time stability. A proprietary 3D inkjet printing system was utilized to print polymer multilayer structures. The morphology, surface profile, and the thickness uniformity of inkjet printed multilayers were evaluated by optical microscopy and FT‐IR microscopy. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43572.  相似文献   

17.
Poly[2,7‐(9,9‐dioctylfluorene)‐alt−4,7‐bis(thiophen‐2‐yl)benzo‐2,1,3‐thiadiazole] (PFO‐DBT) and o‐xylenyl‐C60‐bisadduct (OXCBA) nanostructured composite has been fabricated via the hard porous alumina template‐directed method. Spin‐coating technique at the spin rate of 1000 rpm is used to assist the infiltration of polymer solution into porous template. PFO‐DBT nanotube is fabricated by replicating the porous alumina template before the formation of PFO‐DBT:OXCBA nanostructured composite. Formation of nanostructured composite is completed once the infiltration of OXCBA solution into PFO‐DBT nanotubes is achieved. Detailed results of morphological, structural, and optical properties of PFO‐DBT nanostructures (nanorods and nanotubes) of different solution concentrations are reported. By tuning the optical properties of PFO‐DBT nanostructures, the effect of solution concentration on the optical properties can be realized. The promising PFO‐DBT nanotubes are chosen for the further fabrication of OXCBA:PFO‐DBT nanostructured composite that acts as a core and shell, respectively. Although the nanostructured composite of PFO‐DBT:OXCBA yield low light absorption intensity, the absorption spans the whole visible region and produce low optical energy gap. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44228.  相似文献   

18.
In the present work the results of a study concerning the surface properties of coating materials obtained from fluorinated latices are reported. Better understanding is required regarding the influence of polymer structure, latex composition, and morphology on the surface properties of the resulting films. For this purpose, two commercial fluorinated waterborne polymer dispersions were compared with a model fluorinated acrylic latex purposely synthesized. The surface properties of mold samples, prepared from either the whole solid matter contained in the latices (dried latex) or the purified polymer, were determined by simple contact angle measurements. Two series of homologous liquids, namely H‐bonding alcohols and apolar hydrocarbons, were employed for determining the critical surface tension γc according to the method of Zisman. The results of the surface characterization indicate that the degree of fluorination plays a minor role in these materials, suggesting that the threshold above which the polymer surface is virtually saturated by CF2 or CF3 groups might have been largely exceeded. On the other hand, the effectiveness of the hydrophobic fluorinated coating resulted substantially unaffected by the presence of amphiphilic low molecular weight additives, such as surfactants and wetting agents, which can actually contribute to the reduction of the surface energy of these materials upon suitable thermal treatment.  相似文献   

19.
Fluorinated polyurethane–acrylate (FPUA) hybrid emulsion was prepared by copolymerization of polyurethane, methyl methacrylate, and 1H,1H,2H,2H‐heptadecafluorooctyl acrylate (FA) via emulsion polymerization in the presence of a perfluoronated reactive surfactant. The polyurethane was synthesized from isophorone diisocyanate, poly(propylene glycol)‐1000, dimethylolpropionic acid, 1,4‐butanediol, and 2‐hydroxyethyl methylacrylate. The influence of the monomer on the surface properties, wetting behaviors, particle size, and viscosity of the emulsion was investigated. The mechanical properties of FPUA latex films were improved, and water absorption and contact angle were improved with the addition of methyl methacrylate and FA. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43357.  相似文献   

20.
Summary: The aim of this study is to examine the effect of the compounding apparatus and of processing conditions on the properties of an organoclay‐poly[ethylene‐co‐(vinyl acetate)] (EVA) nanocomposite. The filled materials were prepared using either a discontinuous batch mixer, a single screw extruder, a counter rotating intermeshing twin‐screw compounder or a corotating intermeshing twin‐screw extruder. The characterization of the obtained nanocomposites was performed by XRD, thermogravimetry, mechanical and rheological measurements. The study has shown the possibility of producing nanocomposites based on EVA and a commercial organoclay (Cloisite 15A) by several mixing equipments. In fact all the prepared composite materials exhibit a larger interlayer clay spacing in comparison with the pristine organoclay. Moreover their elastic modulus is significantly increased from 50 to 100% depending on the processing conditions.

X‐ray diffraction of the master (Sample A) and the clay used for its preparation (Cloisite 15A).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号