首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
In this article, highly loaded silver (Ag) nanoparticles with mean diameter of about 7.83 nm were synthesized by reducing Ag ions by NaBH4 with strong reducibility, and homogeneously embedded into cellulose aerogels without obvious reunion. The as‐prepared nano‐Ag/cellulose (NAC) aerogels maintained nanoporous and multiscale morphology similar to the pure cellulose aerogels, and showed strong antibacterial activities for both Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive). Meanwhile, after the incorporation of Ag nanoparticles, NAC aerogels also displayed more superior thermal stability. Thus, the novel NAC aerogels might be expected to be used as various biomedical applications, especially green heat‐resistant high‐performance antibacterial materials. POLYM. COMPOS. 37:1137–1142, 2016. © 2014 Society of Plastics Engineers  相似文献   

2.
The poly(3,4‐ethylenedioxythiophene) (PEDOT) family of polymers is a technologically important class of conducting polymers showing high stability, medium band gap, low redox potential and high optical transparency in the electrically conductive state. While PEDOT nanotubes and nanofibres have been synthesized electrochemically, significant opportunity exists for developing a convenient chemical synthetic route for the bulk synthesis of nanostructured PEDOT for potential use in the design of next‐generation nano‐electronic circuits and field emission devices. In this paper, chemical oxidative polymerization was used to synthesize PEDOT nanoparticles. These nanoparticles were co‐electrospun with poly(l ‐lactic acid) from a solution in acetone and N,N‐dimethylformamide. The PEDOT particles were analysed using attenuated total reflectance–Fourier transform infrared spectroscopy and particle size distribution using dynamic light scattering. The synthesized nanofibre mats were studied using differential scanning calorimetry and scanning electron microscopy, and conductivity was measured using a two‐probe conductivity tester. © 2016 Society of Chemical Industry  相似文献   

3.
A nanosilver (nano‐Ag)/poly(vinyl alcohol) (PVA) hydrogel device was synthesized with γ irradiation because it is a highly suitable tool for enhanced nano‐Ag technologies and biocompatible controlled release formulations. The amount of the Ag+ ions released in vitro by the nano‐Ag/PVA hydrogel device was in the antimicrobial parts per million concentration range. The modeling of the Ag+ ion release kinetics with the elements of the drug‐delivery paradigm revealed the best fit solution (R2 > 0.99) for the Kopcha and Makoid–Banakar's pharmacokinetic dissolution models. The term A/B, derived from the Kopcha model, indicated that the nano‐Ag/PVA hydrogel was mainly an Ag+‐ion diffusion‐controlled device. Makoid–Banakar's parameter and the short time approximated Ag+‐ion diffusion constant reflected the importance of the size of the Ag nanoparticles. However, it appeared that the cell oxidation potential of the Ag nanoparticles depended on the diffusion characteristics of the fluid penetrating into the Ag/PVA nanosystem. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40321.  相似文献   

4.
Amphiphilic linear–hyperbranched polymer poly(ethylene glycol)–branched polyethylenimine–poly(?‐caprolactone) (PEG‐PEI‐PCL) was synthesized by progressively conjugating PEG (one chain) and PCL (multi‐chains) to PEI (hyperbranched architecture) with a yield of 87%. PEG‐PEI‐PCL forms nano‐sized uniform spherical micelles by self‐assembly in water. The micelles had an average diameter of 56 nm determined using dynamic light scattering and 35 nm observed from transmission electron microscopy images. PEG‐PEI‐PCL was used as a stabilizer of platinum nanoparticles (PtNPs) for the first time. The particle diameter of PEG‐PEI‐PCL‐stabilized PtNPs was 7.8 ± 1.4 nm. Amphiphilic (hydrophilic–hydrophilic–hydrophobic) and hyperbranched (linear–hyperbranched–grafted) structures enabled PtNPs to effectively stabilize and disperse in liquid‐phase synthesis. The highly disperse PtNPs in PEG‐PEI‐PCL micelles improved the catalytic activity for the reduction of 4‐nitrophenol with a catalytic yield of near 100%. © 2016 Society of Chemical Industry  相似文献   

5.
In this study, a novel type of macromolecular prodrug, N‐galactosylated chitosan (GC)?5‐fluorouracil acetic acid (FUA) conjugate based nanoparticles, was designed and synthesized as a carrier for hepatocellular carcinoma drug delivery. The GC–FUA nanoparticles were produced by an ionic crosslinking method based on the modified ionic gelation of tripolyphosphate with GC–FUA. The structure of the as‐prepared GC–FUA was characterized by Fourier transform infrared and 1H‐NMR analyses. The average particle size of the GC–FUA nanoparticles was 160.1 nm, and their drug‐loading content was 21.22 ± 2.7% (n = 3). In comparison with that of the freshly prepared nanoparticles, this value became larger after 7 days because of the aggregation of the GC–FUA nanoparticles. An in vitro drug‐release study showed that the GC–FUA nanoparticles displayed a sustained‐release profile compared to 5‐fluorouracil‐loaded GC nanoparticles. All of the results suggest that the GC–FUA nanoparticles may have great potential for anti‐liver‐cancer applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42625.  相似文献   

6.
Biodegradable carboxylated polyurethanes with three molecular weights were synthesized to prepare a nanoparticulate sustained delivery system of raloxifene hydrochloride, the drug with poor bioavailability. The nanoparticles were prepared by coprecipitation method. Optimal conditions for the preparation of nanoparticles were obtained using Box–Behnken design. Independent factors were ratio of polymer to drug, Mw of polymer and speed of magnetic stirrer. Dependent variables include zeta potential, polydispersity index (PdI), particle size, and loading efficacy (LE). Results of the fractional factorial design based on an analysis of variance demonstrated that the model for particle size, zeta potential, PdI and loading efficacy was statistically significant. The size of nanoparticles in design experiments were 46–96 nm in diameter and had entrapment efficiency of 84–92%. The nanoparticles were evaluated for in vitro release and showed a sustained release profile (24.19% ± 4.35% after 4 weeks), following the Fickian diffusion‐based release mechanism. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39668.  相似文献   

7.
Nano‐TiO2/carboxymethyl chitosan (CMCS)/poly(vinyl alcohol) (PVA) ternary nanocomposite hydrogels were prepared by freezing–thawing cycles and electron‐beam radiation with PVA, CMCS, and nano‐TiO2 as raw materials. The presence of nano‐TiO2 nanoparticles in the composite hydrogels was confirmed by thermogravimetry, Fourier transform infrared spectroscopy, and X‐ray powder diffraction. Field emission scanning electron microscopy images also illustrated that the TiO2/CMCS/PVA hydrogel exhibited a porous and relatively regular three‐dimensional network structure; at the same time, there was the presence of embedded nano‐TiO2 throughout the hydrogel matrix. In addition, the nano‐TiO2/CMCS/PVA composite hydrogels displayed significant antibacterial activity with Escherichia coli and Staphylococcus aureus as bacterial models. The antibacterial activity was demonstrated by the antibacterial circle method, plate count method, and cell density method. Also, with the Alamar Blue assay, the cytotoxicity of the composite hydrogel materials to L929 cells was studied. The results suggest that these materials had no obvious cytotoxicity. Thus, we may have developed a novel, good biocompatibility hydrogel with inherent photosensitive antibacterial activity with great potential for applications in the fields of cosmetics, medical dressings, and environmental protection. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44150.  相似文献   

8.
Functionalized amphiphilic block copolymers poly(N‐isopropyl acrylamide)‐b‐poly(stearyl methacrylate) (PNIPAM‐PSMA) are synthesized. Their self‐assembled core‐shell nanoparticles have the hydrophilic thermosensitive shell and hydrophobic crystallizable core. Nanoparticles exhibit volume phase transition at temperature of 38 °C and its poly(stearyl methacrylate) (PSMA) moiety could form nano size crystals to retain drugs, making them good carriers for drug co‐delivery system. Thermosensitivity and crystallinity of nanoparticles are characterized with dynamic light scattering (DLS), differential scanning calorimetry (DSC), small‐angle X‐ray scattering (SAXS), and atomic force microscopy (AFM). The interactions and relationship between chemical structures of copolymer nanoparticles and loading drugs are discussed. Different loading techniques and combined loading of hydrophobic/hydrophilic drugs are studied. Nanoparticles show a good and controllable drug loading capacity (DL) of hydrophilic/hydrophobic drugs. The drugs release kinetics is analyzed with Fick's law and Weibull model. A general method for analyzing drug release kinetics from nanoparticles is proposed. Weibull model is well fitted and the parameters with definite physical meaning are analyzed. PNIPAM‐PSMA nanoparticles show a quite different thermal response, temporal regulation, and sustained release effect of hydrophilic and hydrophobic drugs, suggesting a promising application in extended and controlled co‐delivery system of multi‐drug. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44132.  相似文献   

9.
In this study, pH‐responsive amphiphilic chitosan (CS) nanoparticles were used to encapsulate quercetin (QCT) for sustained release in cancer therapy. The novel CS derivatives were obtained by synthesis with 2,3‐epoxy‐1‐propanol, also known as glycidol, followed by acylation with dodecyl aldehyde. Characterization was performed by spectroscopic, viscosimetric, and size‐determination methods. Critical aggregation concentration, morphology, entrapment efficiency, drug release profile, cytotoxicity, and hemocompatibility studies were also carried out. The average size distribution of the self‐assembling nanoparticles measured by dynamic light scattering ranged from 140 to 300 nm. In vitro QCT release and Korsmeyer–Peppas model indicated that pH had a major role in drug release. Cytotoxicity assessments indicated that the nanoparticles were non‐cytotoxic. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay further revealed that QCT‐loaded nanoparticles could inhibit MCF‐7 cell growth. In vitro erythrocyte‐induced hemolysis indicated the good hemocompatibility of the nanoparticles. These results suggest that the synthesized copolymers might be potential carriers for hydrophobic drugs in cancer therapy. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45678.  相似文献   

10.
A new kind of block copolymer micelles methoxy polyethylene glycol (mPEG) grafted α‐zein protein (mPEG‐g‐α‐zein) was synthesized. The chemical composition of mPEG‐g‐α‐zein was identified with the help of FT‐IR and 1H‐NMR. The biohybrid polymer can self‐assemble into spherical core–shell nanoparticles in aqueous solution. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to investigate the self‐assembled morphology of mPEG‐g‐α‐zein. Dynamic light scattering (DLS) results showed that the particle size of mPEG‐g‐α‐zein was about 90 nm. Moreover, the nanoparticles had a very low critical micelle concentration value with only 0.02 mg/mL. Then, the anticancer drug curcumin (CUR) was encapsulated into the biohybrid polymer micelles. The in vitro drug release profile showed a zero‐order release of CUR up to 12 h at 37°C. Cell viability studies revealed that the mPEG‐g‐α‐zein polymer exhibited low cytotoxicity for HepG2 cells (human hepatoma cells). Consequently, the mPEG‐g‐α‐zein micelles can be used as a potential nano‐carrier to encapsulate hydrophobic drugs and nutrients. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42555.  相似文献   

11.
In this research, the controlled release of proteins from magnetite (Fe3O4)–chitosan (CS) nanoparticles exposed to an alternating magnetic field is reported. Fe3O4–CS nanoparticles were synthesized with sodium tripolyphosphate (TPP) molecules as a crosslinking reagent. Bovine serum albumin (BSA) was used as a model protein, and its controlled release studied through the variation of the frequency of an alternating magnetic field. The results show the successful coating of CS and BSA on the Fe3O4 nanoparticles with an average diameter of 50 nm. Intermolecular interactions of TPP with CS and BSA were confirmed by Fourier transform infrared spectroscopy. The application of low‐frequency alternating magnetic fields to such magnetic CS nanoparticles enhanced the protein release properties, in which the external magnetic fields could switch on the unloading of these nanoparticles. We concluded that enhanced BSA release from nanoparticles exposed to an alternating magnetic field is a promising method for achieving both the targeted delivery and controlled release of proteins. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43335.  相似文献   

12.
To inhibit the ototoxicity of gentamicin (GM) and overcome the drawback related to chitosan (CS) nanoparticles preparation in acid solution, O‐carboxymethyl chitosan (O‐CMC) nanoparticles loaded with GM and salicylic acid (SA) were prepared by ionic cross‐linking method using calcium chloride as crosslinking agent. The Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD) were used to analyze the reaction of O‐CMC and crosslinking agent. The parameters of preparation of the compound nanoparticles including the concentration of O‐CMC, the mass ratio of O‐CMC to calcium chloride, and the feed ratio of SA to GM were investigated. The results showed that the obtained nanoparticles had a high zeta potential and drug‐loading capacity. The nanoparticles were characterized by a spherical morphology, with average size ranging from 148 to 345 nm and a narrow particle size distribution. In vitro release studies in phosphate buffer saline (pH 7.4) evidenced a burst release in the first 1 h, followed by a sustained release in the residual time. The release amount of SA and GM were approximately equal in 24 h, which indicated that the SA‐ and GM‐loaded O‐CMC nanoparticles are a promising carrier system for inhibiting the ototoxicity of GM. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Novel amphiphilic star‐shaped terpolymers comprised of hydrophobic poly(?‐caprolactone), pH‐sensitive polyaminoester block and hydrophilic poly(ethylene glycol) (Mn = 1100, 2000 g mol?1) were synthesized using symmetric pentaerythritol as the core initiator for ring‐opening polymerization (ROP) reaction of ?‐caprolactone functionalized with amino ester dendrimer structure at all chain ends. Subsequently, a second ROP reaction was performed by means of four‐arm star‐shaped poly(?‐caprolactone) macromer with eight ‐OH end groups as the macro‐initiator followed by the attachment of a poly(ethylene glycol) block at the end of each chain via a macromolecular coupling reaction. The molecular structures were verified using Fourier transform infrared and 1H NMR spectroscopies and gel permeation chromatography. The terpolymers easily formed core–shell structural nanoparticles as micelles in aqueous solution which enhanced drug solubility. The hydrodynamic diameter of these agglomerates was found to be 91–104 nm, as measured using dynamic light scattering. The hydrophobic anticancer drug curcumin was loaded effectively into the polymeric micelles. The drug‐loaded nanoparticles were characterized for drug loading content, encapsulation efficiency, drug–polymer interaction and in vitro drug release profiles. Drug release studies showed an initial burst followed by a sustained release of the entrapped drug over a period of 7days at pH = 7.4 and 5.5. The release behaviours from the obtained drug‐loaded nanoparticles indicated that the rate of drug release could be effectively controlled by pH value. Altogether, these results demonstrate that the designed nanoparticles have great potential as hydrophobic drug delivery carriers for cancer therapy. © 2015 Society of Chemical Industry  相似文献   

14.
The purpose of this study was to determine major factors impacting the size of simvastatin (SIM)‐loaded poly(d , l ‐lactic‐co‐glycolide) (PLGA) nanoparticles (NPs) that was prepared using electrospraying. Three variables including concentration of polymer and salt as well as solvent flow rate were used as input variables. Size of NPs was considered as output variable. For the first time, our findings using a systematic and experimental approach, showed the importance of salt concentration as the dominant factor determining the size with a sharp and reverse effect. Optimum formulation (i.e., flow rate 0.08 mL h?1, polymer concentration 0.7 w/v %, and salt concentration 0.8 mM) was then evaluated for aqueous solubility, encapsulation efficiency, particle size, in vitro drug release pattern and cytotoxicity. A very appreciable encapsulation efficiency (90.3%) as well as sustained release profile, considerable enhancement in aqueous solubility (~5.8 fold) and high IC50 (>600 µM of SIM‐loaded PLGA NPs) indicated PLGA as a promising nanocarrier for SIM. The optimum formulation had particle size, zeta potential value, polydispersity index (PDI) and drug loading of 166 nm, +3 mV, 0.62 and 9%, respectively. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43602.  相似文献   

15.
Novel thermally and magnetically dual‐responsive mesoporous silica nanoparticles [magnetic mesoporous silica nanospheres (M‐MSNs)–poly(N‐isopropyl acrylamide) (PNIPAAm)] were developed with magnetic iron oxide (Fe3O4) nanoparticles as the core, mesoporous silica nanoparticles as the sandwiched layer, and thermally responsive polymers (PNIPAAm) as the outer shell. M‐MSN–PNIPAAm was initially used to control the release of sophoridine. The characteristics of M‐MSN–PNIPAAm were investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetry, N2 adsorption–desorption isotherms, and vibrating specimen magnetometry analyses. The results indicate that the Fe3O4 nanoparticles were incorporated into the M‐MSNs, and PNIPAAm was grafted onto the surface of the M‐MSNs via precipitation polymerization. The obtained M‐MSN–PNIPAAm possessed superparamagnetic characteristics with a high surface area (292.44 m2/g), large pore volume (0.246 mL/g), and large mesoporous pore size (2.18 nm). Sophoridine was used as a drug model to investigate the loading and release properties at different temperatures. The results demonstrate that the PNIPAAm layers on the surface of M‐MSN–PNIPAAm effectively regulated the uptake and release of sophoridine. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40477.  相似文献   

16.
In this study, a novel paclitaxel (PTX) loaded and a crosslinked solid phospholipid nanoparticles (SLN‐PTX) with negative surface charge was prepared by UV polymerization for drug delivery. Capping of positive charge of zwitterionic lecithin with negative charge of sodium 2‐acrylamido‐2‐methyl‐1‐propanesulfonate (AMPS‐Na) through cation exchange interaction produced a lecithin‐AMPS (L‐AMPS) complex. The amphiphilic and negative charged lipid complex was emulsified in the presence of emulsifier, paclitaxel, initiator, and methacrylated poly ε‐caprolacton‐diol (PCL‐MAC) as a spacer. The colloidal system was subjected to UV‐irradiation to obtain crosslinked nanoparticles. Completion of the UV‐polymerization was monitored with differential scanning calorimetry (DSC), which indicated the disappearance of exothermic peaks of vinyl groups. The nanoparticle system, having an average size of 200 nm, exhibited high drug encapsulation (96%) with negatively charged surface (zeta potential had an average of ?70 mV). PTX release profiles of the crosslinked and uncrosslinked SLN‐PTXs were studied and their pharmacological properties were compared. The crosslinked nanoparticles exhibited more controlled release behavior with longer release time compared to the uncrosslinked ones. In vitro cytotoxicity test was conducted on MCF‐7 human breast adenocarcinoma cell line, which indicated that the crosslinked SLN‐PTXs have a potential therapeutic effect for breast cancer treatments. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44105.  相似文献   

17.
Crosslinked nanocomposite films of sodium alginate (SA) and silicon dioxide (SiO2) with different SiO2 loading values were prepared by in situ synthesis. Biocomposite films were produced by solution casting and solvent evaporation with glycerol as the plasticizer and calcium chloride as the crosslinking agent. The effects of the addition of nano silicon dioxide (nano‐SiO2) in SA on the microstructural, physical, mechanical, and optical properties of the nanocomposite films were characterized. The results show that nano‐SiO2 was dispersed homogeneously in the SA matrix; it thereby formed a strong interfacial interaction between the nano‐SiO2 particles and the matrix. The transparency of the bionanocomposite films was enhanced. Thermogravimetric analysis also revealed that nano‐SiO2 improved the thermal stability of the SA films. The incorporation of SiO2 further reduced the water vapor permeability and swelling degree and significantly increased the tensile strength and elongation, which are parameters important for packaging industries. Finally, the lower light transmission of UV light from 200 to 250 nm indicated that SA/SiO2 nanocomposite films could potentially be used to prevent lipid damage by UV light in food conservation. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43489.  相似文献   

18.
Nano silver particles with an average mean crystallite size of between 10 and 12 nm were synthesized from different molecular weights of poly(ethylene glycol) as a stabilizing agents, through solid state oxidation of silver nitrate using a higher energy planetary ball mill. Ultraviolet‐Visible spectra were used to confirm the synthesis of nano silver particles. The surface plasmon resonance bands were observed around 410 nm. Fourier transformed infrared spectrum, X‐ray diffraction, and transmission electronic microscopy techniques were used to characterize the nano silver particles synthesized. Thermal stability was determined using thermogravimetic analysis and the elemental composition of the sample was determined by energy dispersive X‐ray analysis. The nano silver particles synthesized, exhibited very good antibacterial activity against Gram‐positive bacteria (Bacillus) and Gram‐negative bacteria (Pseudomonas aeruginosa). Based on the obtained results, it was additionally explored that the size and the stabilization of the nano silver particles synthesized, strongly depend on the molecular weight of poly(ethylene glycol). © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43027.  相似文献   

19.
A novel method of nano‐SiO2/poly(methyl methacrylate)(PMMA)‐polyurethane(PU) composite particles modifying epoxy resin is reported. The composite particles with the obvious core‐shell structure were prepared by emulsion polymerization of PMMA and PU prepolymer on the surface of nano‐SiO2. The diameter of the composite particles was 50–100 nm with dark core SiO2 (30–60 nm) and light shell polymer of PMMA and PU (20–30 nm); moreover, PU was well distributed in PMMA with about 10 nm diameter. After nano‐SiO2 was encapsulated by PMMA and PU, the Si content on the surface decreased rapidly to 2.08% and the N content introduced by PU was about 1.27%. The ratio of polymer to original nano‐SiO2 (fp), the grafting ratio of polymer to original nano‐SiO2 (fr) and the efficiency grafting ratio of polymer (fe) were, respectively, about 116.7%, 104.4%, and 89.5%. The as‐prepared composite particles were an effective toughness agent to modify epoxy resin, and the impact strength of the modified epoxy resin increased to 46.64 kJ m?2 from 19.12 kJ m?2 of the neat epoxy resin. This research may enrich the field of inorganic nanoparticles with important advances toward the modification for polymer composite materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41919.  相似文献   

20.
The present work describes a novel method for the synthesis of silver polymer nanocomposite for the delivery of amoxicillin (AMO). Silver nanoparticles (AgNPs) were synthesized with chitosan and silver nitrate. The reaction parameters were optimized. Three‐dimensional polymeric networks were synthesized by simple free‐radical graft copolymerization. UV–visible spectroscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, SEM, atomic force microscopy, dynamic light scattering, and zeta potential analysis were used for the complete characterization of the samples. Swelling studies and swelling factors were evaluated. In vitro release of AMO and AgNPs at physiological pHs was analyzed using the Peppas kinetic model to explain the drug delivery mechanism. Cytotoxicity, free‐radical scavenging, and antibacterial activities were analyzed. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43479.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号