首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of ethylene vinyl acetate (EVA)/ethylene‐propylene diene elastomer (EPDM) blends (50/50 ratio) with four types of EVAs were prepared using brabender type batch mixer followed by compression molding. All compression‐molded samples were exposed to gamma radiation at 500, 1000, and 1500 kGy doses and were subjected to mechanical, compression set, thermal and morphological test. The % retention in tensile strength, elongation, and hardness were found higher for higher vinyl acetate (VA) containing radiation aged EVA/EPDM blends. The compression set value was decreased with increase of VA content. The thermal degradation kinetics of high VA containing irradiated blend (EVA40/EPDM) (EVA40 is 40%VA containing EVA) was found slower than those of lower VA containing blend (EVA18/EPDM). The surface morphology for EVA18/EPDM sample was transformed into more irregular one with more cracks and fragmented segments by aging at 1500 kGy dose while surface for EVA40/EPDM sample was found comparatively smooth, fine, and continuous with very few cracks and fragmented parts at similar dose. Thus, from the measured properties and morphology, it was revealed that the degree of degradation of blends kept on decreasing with increase in VA content. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46216.  相似文献   

2.
The radiation‐induced crosslinking, compatibility, and surface modification of low density polyethylene/ethylene vinyl acetate blends (LDPE/EVA) were investigated. The structural and physical properties were characterized in terms of gel content, hot set, mechanical properties, contact angle, and surface free energy. The highest crosslink density was obtained at 20 wt % of EVA. Gel content of LDPE/EVA blends was increased with increasing irradiation dose, vinyl acetate (VA), and EVA contents. The hot set results are consistent with the gel content data. Mechanical testing showed that the tensile strength of samples increased with increasing irradiation dose up to 180 kGy, whereas the elongation at break was decreased with increasing irradiation dose. Contact angle measurements showed that the surface hydrophillicity of LDPE blend was increased with increasing irradiation dose and contents of both VA and EVA. The surface free energy was greatly dependent on irradiation dose and content of both VA and EVA. The total surface free energies of different LDPE formulations were in the range 17.25–32.51 mN/m, in which the polar (pσ) and disperse (dσs) values were within the range 16.52–26.6 and 0.9–5.91 mN/m, respectively. In conclusion, electron beam irradiation and blending LDPE with EVA improved the wettability or adhesion properties of LDPE/EVA blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
In this study, the effects of the elastomer type—ethylene–propylene–diene monomer (EPDM), three kinds of ethylene vinyl acetate (EVA 9, EVA 18, and EVA 28, where the number is the vinyl acetate concentration), and styrene–butadiene–styrene—and content on the microstructure and mechanical and thermal properties of isotactic polypropylene (i‐PP) blends were investigated. Five different elastomer concentrations (3, 6, 9, 12, and 15 wt %) were added to i‐PP to produce polypropylene/elastomer blends. The yield and tensile strengths, elastic modulus, impact strength, hardness, melt flow index (MFI), and structural properties of the blends were investigated. The tensile and yield strengths, elastic modulus, and hardness decreased gradually, whereas the impact strength and MFI increased as the elastomer content increased. As a result, with respect to the impact strength, the most effective elastomers were EPDM with 15 wt % and EVA 28 with 15 wt % for higher impact strength values. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1445–1450, 2005  相似文献   

4.
The effect of irradiation on a 50/50 ethylene vinyl acetate/epoxidized natural rubber blend was studied. The 50/50 ethylene vinyl acetate/epoxidized natural rubber blend was prepared by mixing in a Brabender Plasticoder at 120°C. The blend was then irradiated by using a 3.0 MeV electron beam machine at doses ranging from 20 to 100 kGy in air and room temperature. The dynamic mechanical properties, tensile properties, hardness, and gel fractions of the blends were measured. It was found that the tensile strength, modulus, and hardness of the blend increased with irradiation with a concomitant decline in elongation at break. Results on the gel fraction revealed that under the irradiation conditions employed, the EVA/ENR blend crosslinked by electron beam irradiation. The addition of TMPTA and Surlyn ionomer was found to be effective in increasing the degree of crosslinking.  相似文献   

5.
王亚珍  张辉  李曙光  张丽叶 《塑料》2004,33(1):20-23
辐射交联LDPE/EVA混合体系泡沫片材表观光滑、柔软,手感好,表观密度较小,材料具有优异的力学性能,较高的拉伸强度、断裂伸长率和撕裂强度。进一步研究了产生宏观性能差异的原因是辐射交联LDPE/EVA混合体系泡沫片材制备成型工艺的特殊性,体系的交联度对制品性能影响很大。通过凝胶分析知道交联度与辐照剂量、LDPE树脂的物理性能和EVA树脂在混合体系的含量有关。此外,LDPE树脂的物理性能和EVA在混合体系的含量对材料宏观性能也有影响。  相似文献   

6.
Mixing torque, morphology, tensile properties and swelling studies of natural rubber/ethylene vinyl acetate copolymer blends were studied. Two series of unvulcanized blends, natural rubber/ethylene vinyl acetate (SMRL/EVA) copolymer blend and epoxidized natural rubber (50% epoxidation)/ethylene vinyl acetate (ENR-50/EVA) copolymer blend were prepared. Blends were prepared using a laboratory internal mixer, Haake Rheomix polydrive with rotor speed of 50 rpm at 120°C. Results indicated that mixing torque value and stabilization torque value in ENR-50 blends are lower than SMRL blends. The process efficiency of ENR-50/EVA blends is better due to less viscous nature of the blend compared to SMRL/EVA blends as indicated in stabilization torque graph. Tensile properties like tensile strength, M100 (modulus at 100% elongation) and E b (elongation at break) increase with increasing EVA fraction in the blend. At the similar blend composition, ENR-50 blend shows better tensile properties than SMRL blends. In oil resistance test, swelling percentage increased with immersion time and rubber composition. At a similar immersion time, ENR-50 blends exhibit better oil resistance compared to SMRL blends. Scanning electron microscopy (SEM) of tensile fractured surface indicated that EVA/ENR-50 blends need higher energy to cause catastrophic failure compared to EVA/SMRL blends. In etched cryogenically fractured surface, size and distribution of holes due to extraction of rubber phase by methyl ethyl ketone (MEK) were studied and holes became bigger as rubber composition increased due to coalescence of rubber particle.  相似文献   

7.
A study of the morphology, dynamic mechanical, impact, and tensile properties of ethylene vinyl acetate copolymer (EVA)/expanded graphite (EG) and EVA/wax/EG composites is presented. The composites were prepared by melt blending. The EVA/EG composites showed ductile behavior, while brittle behavior was observed in the presence of wax. A finer dispersion of EG was observed in the matrix when wax was present. The storage modulus of the EVA/wax/EG composite was higher than that of the EVA/EG composite, which is ascribed to a better interaction between the EVA and the wax‐covered EG that significantly reduced the EVA chain mobility. The composites showed a decrease in impact strength with increasing EG and wax contents. There was a significant difference in the elongation at break between the EVA/EG and EVA/wax/EG composites, and little change in Young's modulus of EVA in the presence of EG and with increasing EG content. However, Young's modulus of the EVA/wax blends increased in the presence of and with increasing EG content. In all the investigated samples containing EVA and wax, irrespective of the EG content, the stress at break decreased with an increase in wax content. POLYM. COMPOS., 37:3025–3032, 2016. © 2015 Society of Plastics Engineers  相似文献   

8.
Ethylene vinyl acetate (EVA‐45)/ethylene propylene diene terpolymer (EPDM) blend‐layered double hydroxide (LDH) nanocomposites have been prepared by solution blending of 1:1 weight ratio of EVA and EPDM with varying amounts of organo LDH (DS‐LDH). X‐ray diffraction and transmission electron microscopy analysis suggest the formation of partially exfoliated EVA/EPDM/DS‐LDH nanocomposites. Measurement of mechanical properties of the nanocomposites (3 wt% DS‐LDH content) show that the improvement in tensile strength and elongation at break are 35 and 12% higher than neat EVA/EPDM blends. Dynamic mechanical thermal analysis also shows that the storage modulus of the nanocomposites at glass transition temperature is higher compared to the pure blend. Such improvements in mechanical properties have been correlated in terms of fracture behavior of the nanocomposites using scanning electron microscopy analysis. Thermal stability of the prepared nanocomposites is substantially higher compared to neat EVA/EPDM blend, confirming the formation of high‐performance polymer nanocomposites. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

9.
以丙烯酸酯类多官能团不饱和单体为交联敏化剂,采用电子束对聚氯乙烯(PVC)与乙烯—酸酸乙烯共聚物(EVA)的共混物进行辐照交联。研究了VA质量分数、交联敏化剂种类及用量、辐照剂量、EVA用量对共混物凝胶质量分数、力学性能以及热延伸性能的影响。结果表明:EVA共聚物能促进PVC的辐照交联,增加共混体系的凝胶质量分数,改善其力学及热延伸性能;EVA共聚物中VA质量分数增大,共混体系的凝胶质量分数增大,力学及热延伸性能改善更明显。  相似文献   

10.
Vinyltrimethoxysilane‐grafted ethylene vinyl acetate copolymer (EVA‐g‐VTMS) was synthesized and applied to compatibilize ethylene‐propylene‐diene copolymer (EPDM)/methyl vinyl silicone rubber (MVQ) blends. The silane‐grafting was successfully proved by differential scanning calorimetry, FTIR spectroscopy and XPS spectroscopy. The additive amount of the compatibilizer (EVA‐g‐VTMS) was optimized to be 10 phr (parts per hundred of rubber in weight) based on analysis of scanning electron microscopy, mechanical properties, aging properties, dynamic mechanical properties, rheological properties and thermal properties. Compared with the blend without EVA‐g‐VTMS, results show that the blend with 10 phr of EVA‐g‐VTMS exhibits the finest morphology. Tensile strength, elongation at break, modulus at 100% elongation, tear strength and TE index increase by 82.5%, 16.9%, 60.0%, 40.9%, and 41.9%, respectively. Dynamic mechanical analysis reveals storage modulus increase and glass transition temperatures of EPDM and MVQ move closer to each other. Rheological analysis shows a decrease in complex modulus and complex viscosity, and the processibility of the blend was improved. Furthermore, thermogravimetric analysis shows enhancement of thermal stability. POLYM. ENG. SCI., 2017. © 2017 Society of Plastics Engineers  相似文献   

11.
Linear low‐density polyethylene/soya powder blends were prepared by using an internal mixer at 150°C. The soya powder content ranged from 5 to 40 wt %. Epoxidized natural rubber with 50 mol % epoxidation (ENR 50) was added as a compatibilizer. The blends were irradiated by electron beam (EB) at a constant dose of 30 kGy. The changes in gel fraction, tensile properties, morphological and thermal properties of the samples were investigated. The gel content increased after EB irradiation. However, the increment of gel content was hindered by increasing soya powder content. The tensile strength and Young's modulus of the blends were increased by EB whereas the elongation at break decreased. The tensile fracture surface also support the reduction of elongation at break by EB irradiation. Further analysis on the irradiated blends using Fourier transform infrared spectra indicated an increase of oxygenated product after undergoing EB irradiation. The differential scanning calorimetry result indicated that the melting temperature of the blends decreased after EB irradiation whereas the crystallinity increased. EB irradiation also enhanced the thermal stability of the blends as indicated by thermogravimetric analysis. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Blends of photovoltaic-grade ethylene–vinyl acetate copolymer (EVA), defined by high VA-content and low crystallinity, and low-density ethylene–octene copolymer (EO) have been investigated with regard to their processing, thermal and mechanical properties as well as their morphology. It was found that the amount of EO in the blend has a strong influence on the shear thinning behavior, melt viscosity and therefore the required extrusion temperature and resulting ability to incorporate temperature-sensitive additives like a peroxidic crosslinking agent. A phase separated morphology was found for all blend compositions, though partial miscibility leading to co-crystallization was observed for EVA rich blends. EO rich blends show lower glass transition and higher melting point compared to neat EVA and exhibit higher elastic modulus at elevated temperatures as well as greater elongation at break during tensile testing while the light transmission is diminished. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47714.  相似文献   

13.
In this investigation, a gamma radiation-induced methacrylic acid (MAA)-grafted ethylene-propylene-diene elastomer (EPDM) was used as a third component (g-EPDM) in silicone rubber (SiR)/ethylene-propylene-diene elastomer (EPDM) blends. These blends were electron beam (EB) crosslinked. The effect of blend composition, the presence of g-EPDM, and EB crosslinking on the mechanical, heat shrinkability, electrical, and morphological properties of SiR/EPDM blends have been studied. To investigate the effect of grafted EPDM (g-EPDM), 10 wt % of g-EPDM was added to immiscible SiR/EPDM blends. Both silicone and EPDM are blended in different proportions (70:30 and 30:70) with and without g-EPDM followed by compression molding. To improve the properties and investigate the crosslinkability of binary and ternary blends further, the SiR/EPDM blends were irradiated by electron beam at different doses (50, 100, and 150 kGy). The gel content was found to increase with EPDM content, the presence of g-EPDM, and radiation dose. The addition of g-EPDM led to improvement of tensile properties (tensile strength, Young's modulus, percentage elongation, and toughness), electrical properties, and shrinkability of blends. EB crosslinking further enhanced the above properties. Surface morphology (SEM) revealed that the presence of g-EPDM and the incorporation of EB crosslinking improved the above properties of blends. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47787.  相似文献   

14.
Detailed statistical trend analysis of thermoplastic elastomers based on poly (phenylene ether) (PPE), polystyrene (PS), ethylene vinyl acetate (EVA) and styrene‐ethylene‐butylene‐styrene (SEBS) was done through Design Expert software by Stat‐Ease. D optimal crossed design was followed to capture the interaction with the parameters. Effect of blend ratio, vinyl acetate (VA) content of EVA, molecular weight (MW) of SEBS and intrinsic viscosity (IV) of PPE on the blend performance (response) was studied in detail. Design of Experiment (DOE) analysis showed the “optimized formulation” of the blend. Increase in PPE‐polystyrene (PS) content increased tensile strength and modulus of the blend, followed by a decrease in strain at break. However, EVA had a reverse effect on tensile strength and modulus. Strain at break increased significantly with increasing SEBS content in the blend. Graphical and numerical optimization showed that superior mechanical properties (tensile strength, strain at break and modulus) could be achieved at VA content ~ 50% at a particular loading of EVA. Low MW SEBS was found to be more compatible with the other components of the blend. Mechanical properties of the quaternary blend were marginally affected with change in IV of PPE in the range of 0.33 to 0.46. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
Thermoplastic elastomer composites of ethylene vinyl acetate (EVA)/natural rubber (NR) blends filled with palm ash were prepared by melt-mixing using a Haake Rheomix Polydrive R600/610 at 120°C with rotor speed of 50 rpm for 10 minutes. Increase in palm ash loading in composites resulted in increase the value of stabilization toque, Young's modulus and swelling resistance of the composites, but decreased the tensile strength and elongation at break. Scanning electron microscope micrographs revealed that higher filler loading resulted in agglomeration of palm ash in the composites. When smaller particle size of palm ash was used, further improvement in tensile strength, elongation at break, swelling resistance and stabilization torque value were observed.  相似文献   

16.
The effect of gamma irradiation on the properties of waste low density polyethylene/ethylene vinyl acetate/bitumen blend was investigated. The variation in tensile strength, elongation at break, hardness and compression set (%) of the prepared blends confirmed the impact of gamma irradiation on the blend microstructure. The best mechanical properties were reported at an integral irradiation dose of 75 kGy at a weight composition ratio of bitumen:EVA:waste LDPE blend, 1:1:1. The influence of ionizing irradiation on the thermal stability and compatibility of the prepared blends, solubility and scanning electron micrographs were investigated. The results suggest that EVA content plays a detrimental role in the ultimate specifications via irradiation. The study offers an elastic product thanks to the controllable radiation crosslinking of EVA beside the introduction of the waste LDPE and bitumen as a possible means of recycling for a likely implementation in expansion joint systems of the concrete moulds.  相似文献   

17.
Foamed materials (EVA/ESI) have been prepared from blends of ethylene‐vinyl acetate copolymer (EVA) and ethylene‐styrene interpolymers (ESI) in the presence of various amounts of dicumyl peroxide (DCP). Four ESIs of different compositions were employed in this study; their styrene contents ranged from 30 to 73 wt% and their Tg ranged from −2 to 33°C. It has been found that microcellular morphology, degree of crosslinking and expansion ratio were strongly affected by the DCP concentration and the type of ESI employed. A minimum degree of crosslinking was required for making good foams and the same degree of crosslinking could be achieved by employing a smaller amount of DCP for an EVA/ESI blend having a higher styrene content. In contrast to other EVA blends, such as EVA/LDPE, these EVA/ESI blends exhibited no existence of any optimum DCP concentration, and the α glass transition temperatures of the foams varied with the ESI type, covering a wide span from 0°C to 37°C. Therefore, it was possible to tailor the Tg of an EVA/ESI blend by choosing an appropriate type of ESI. Furthermore, by correctly tailoring the Tg, the EVA/ESI foam could be made into a rubbery material with a custom‐designed damping factor. Tensile strength and modulus of the EVA/ESI foams increased generally with an increase in the styrene content, with the exception that ESIs with very low styrene content will confer on the blend a high modulus at small strain and a large elongation at break.  相似文献   

18.
The effect of blend ratio on the crosslinking characteristics of ethylene vinyl acetate and ethylene propylene diene tercopolymer (EVA‐EPDM) blends was studied by differential scanning calorimetry and a torque rheometer (Rheocord‐90). The activation energy decreases with an increase in EVA content in the blend. The cure rate increases whereas the optimum cure time and energy consumption for curing decrease with an increase in the EVA/EPDM ratio. The dynamic curing obtained by the torque rheometer is very fast compared to the static curing obtained by differential scanning calorimetry. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2756–2763, 1999  相似文献   

19.
将聚酯型和聚醚型聚氨酯弹性体(TPU385E,TPU8685)分别与不同乙酸乙烯酯含量的乙华平橡胶(EVM400,EVM700)进行共混,考察了原料种类、共混比对共混物力学性能和耐磨性的影响。结果表明,随着TPU用量的增加,EVM/TPU共混物的拉伸强度、邵尔A硬度、100%定伸应力和300%定伸应力均提高,扯断伸长率下降;随着EVM用量的增加,EVM/TPU共混物的拉伸强度、邵尔A硬度、100%定伸应力和300%定伸应力均降低,扯断伸长率增大;随着TPU用量的增加,EVM/TPU共混物的耐磨性提高;TPU8685/EVM400共混物具有最大的拉伸强度,TPU385E/EVM700共混物具有最大的扯断伸长率,TPU8685/EVM700共混物具有最好的耐磨性;当2种TPU与EVM400质量比都为50/50时,TPU385E/EVM400的耐磨性最差。  相似文献   

20.
Radiation effects of low‐density polyethylene/ethylene‐vinyl acetate copolymer (LDPE/EVA) blends were discussed. EVA content in the LDPE/EVA blends was an enhancement effect on radiation crosslinking of LDPE/EVA blends, and the highest radiation crosslinking was obtained when the EVA content was reached at 30% when irradiated by γ‐ray in air. The phenomenon was discussed with the compatibility, morphology, and thermal properties of LDPE/EVA blends and found that the enhanced radiation crosslinking of the LDPE/EVA blends was proportional to the good compatibility, the increasing degree of the amorphous region's content of the LDPE/EVA blends, and the vinyl acetate content of EVA. We also found that the vinyl acetate of EVA in the blends is easily oxidized by γ‐ray irradiation in air. The possible radiation crosslinking and degradation mechanism of LDPE/EVA blends was discussed quantitatively with a novel method “step‐analysis” process of irradiated LDPE/EVA blends in the thermal gravimetric analysis (TGA) technique. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1296–1302, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号