首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of the present work was to develop a fragrance encapsulation system using polyacrylate/paraffin microcapsules. The Polyacrylate/paraffin microcapsules were fabricated by the method of suspension polymerization in Pickering emulsion. Morphology, size distribution, and thermal resistance of polyacrylate/paraffin microcapsules were investigated by scanning electron microscopy, light scattering particle size analyzer, and thermogravimetric analyzer. Results indicated that the crosslinked PMMA/paraffin microcapsules and P(MMA‐co‐BMA)/paraffin microcapsules prepared under optimal conditions presented regular spherical shape and similar size distribution. The crosslinked P(MMA‐co‐BMA)/paraffin microcapsules exhibited better thermal stability, with a thermal resistance temperature up to 184 °C. Fragrance microcapsules were prepared by encapsulating fragrance into crosslinked P(MMA‐co‐BMA)/paraffin microcapsules. The prolonged release performance of fragrance microcapsules was measured by ultraviolet‐visible near‐infrared spectrophotometer. 63.9% fragrance was retained after exposing fragrance microcapsules in air for 3 months, and the fragrance continued to release over 96 h in surfactant solution (sodium lauryl sulfonate, 20 wt %). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44136.  相似文献   

2.
Triglycidyl isocyanurate (TGIC), a thermal curing agent, was encapsulated with poly(methyl methacrylate) with small particle size and narrow distribution for the application in acrylic resins to prepare one‐package UV and thermal dual‐cured coatings. Investigation of the wettability and thermal properties suggests that the microcapsules have better compatibility with acrylic resins and thermal stability as compared to pure TGIC. Results of the release performance experiments indicate good storage stability at 25°C and a quick release of vast TGIC at 120°C for the microcapsules. The UV‐thermal dual‐cured coatings prepared with the microcapsules exhibit a fast, even and complete hardening at 130°C together with an excellent adhesion to the mild steel panels. The results presented here show an application potential of the microcapsules in UV and thermal dual‐cured paints. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41008.  相似文献   

3.
In this study, microcapsules containing fragrance oils as active agent were synthesized by interfacial thiol‐ene polymerization in oil‐in‐water emulsion. One water‐soluble dithiol and four oil‐soluble acrylates were used as “click”able monomers. The polymerization kinetics was studied by HPLC and 1H‐NMR. The size and morphology of the microcapsules were characterized by means of light scattering, optical microscope, and scanning electron microscope, and their thermal property was examined by TGA. The encapsulation efficiency and stability of the microcapsules were monitored at room temperature and 45 °C for 1 month. In general, this interfacial thiol‐ene polymerization was demonstrated to be a facile and efficient approach for fragrance microencapsulation with new and stable shell materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43905.  相似文献   

4.
Phase‐change heat‐storage UV curable polyurethane acrylate (PUA) coating was prepared by applying microencapsulated phase change materials (microPCMs) to PUA coating. MicroPCMs containing paraffin core with melamine‐formaldehyde shell were synthesized by in situ polymerization. The effect of stirring speed, emulsification time, emulsifier amount, and core/shell mass ratio on particle size, morphology, and phase change properties of the microPCMs was studied by using laser particle size analyzer, Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopic analysis, scanning electron microscopy, and differential scanning calorimetry. The results showed that the diameter of the microcapsules decreased with the increase of stirring speed, emulsification time, and emulsifier amount. When the mass ratio of emulsifier to paraffin is 6%, microcapsules fabricated with a core/shell ratio of 75/25 have a compact surface and a mean particle size of 30 μm. The sample made under the above conditions has a higher efficiency of microencapsulation than other samples and was applied to PUA coating. The dispersion of microPCMs in coating and heat‐storage properties of the coating were investigated. The results illustrated that the phase‐change heat‐storage UV curable PUA coating can store energy and insulate heat. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41266.  相似文献   

5.
In this work, the melt strength of PP matrix was reinforced by crosslinking‐modified PP (CM‐PP) which was yielded by peroxide‐initiated crosslinking of linear PP with butyl acrylate (BA). The nano‐silica aerogel (nano‐SiO2) worked as a nucleating agent for foaming. The effects of CM‐PP with the various contents of BA on the foaming behavior and thermal property of PP were studied by measurements of density, thermal conductivity, Vicat softening temperature and SEM. The results showed that the foamed PP got the best properties when the crosslinking PP modified with the weight ratio of butyl acrylate was 10 wt %. The density of the obtained foamed PP with uniform closed cells was as low as 0.23 g/cm3, the thermal conductivity was 0.044 W/(m K), and the Vicat softening temperature was 120 °C. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44340.  相似文献   

6.
Ammonium polyphosphate (APP)–polystyrene (PSt) core–shell microspheres (CSPs) were synthesized via in situ radical polymerization. The core–shell structure was confirmed by transmission electron microscope (TEM). The results of optical contact angle measurements demonstrated a significant improvement in hydrophobicity of the modified APP. The obtained APP–PSt CSPs were added into epoxy (EP) system with various loadings. Effects of CSP on flame retardancy, thermal properties, heat release rate (HRR), smoke production, and mechanical properties of EP/CSP composites were investigated by limiting oxygen index (LOI), UL‐94 tests, thermogravimetric analysis (TGA), cone calorimeter, and tensile test. LOI and UL‐94 indicated that CSP remarkably improved the flame retardancy of EP composites. TGA showed that the initial decomposition temperature and the maximum‐rate decomposition temperature decreased, whereas residue yields at high temperature increased with the incorporation of microspheres. Cone calorimetry gave evidence that HRR, peak release rate, average HRR, and smoke production rate of EP/CSP composites decreased significantly. The morphology of char residues suggested that CSP could effectively promote EP to form high‐quality char layer with compact outer surface and swollen inner structure. Tensile strength of EP was enhanced with the addition of CSP. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40218.  相似文献   

7.
Core–shell structured bamboo–plastic composites (BPCs) were directly prepared with a single‐screw/single‐screw coextruder system. The effects of different shell layers, such as high‐density polyethylene (HDPE), bamboo pulp fiber (BPF)/HDPE, and white mud (WM)/HDPE, were studied in the context of the mechanical properties and the characteristics of the interfacial transition zone (ITZ) of BPC. The mechanical properties of the core–shell structured BPC were characterized by flexure, short‐beam shear, and impact tests. The surface morphologies of BPC were analyzed with field emission scanning electron microscopy. The ITZ properties were studied with dynamic mechanical analysis and nano‐indentation testing. The results show that the flexural properties, short‐beam strength, and impact strength decreased profoundly in the presence of BPF or WM. The dynamic mechanical analysis results suggest that the ITZ properties decreased, as indicated by the reductions in the storage modulus, loss modulus, and loss factor; the nano‐indentation results show that on the addition of BPF or WM, a gradient in the hardness and modulus of elasticity appeared across ITZ. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43053.  相似文献   

8.
Microcapsules containing paraffin and diethyl ethylphosphonate (DEEP) flame retardant with uncrosslinked and crosslinked poly (methacrylic acid‐co‐ethyl methacrylate) (P(MAA‐co‐EMA)) shell were fabricated by suspension‐like polymerization. The surface morphologies of the microencapsulated phase change materials (microPCMs) were studied by scanning electron microscopy. The thermal properties and thermal stabilities of the microPCMs were investigated by differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The flame retarding performances of the microcapsule‐treated foams were calculated by using an oxygen index instrument. The DSC results showed that the crosslinking of the polymer shell led to an increase in the melting enthalpies of the microcapsule by more than 15%. The crosslinked P(MAA‐co‐EMA) microcapsules with DEEP and without DEEP have melting enthalpies of 67.2 and 102.9 J/g, respectively. The TGA results indicated that the thermal resistant temperature of the crosslinked microcapsules with DEEP was up to 171°C, which was higher than that of its uncrosslinked counterpart by ~20°C. The incorporation of DEEP into the microPCM increased the limiting oxygen index value of the microcapsule‐treated foams by over 5%. Thermal images showed that both microcapsule‐treated foams with and without DEEP possessed favorably temperature‐regulated properties. As a result, the microPCMs with paraffin and DEEP as core and P(MAA‐co‐EMA) as shell have good thermal energy storage and thermal regulation potentials, such as thermal‐regulated foams heat insulation materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41880.  相似文献   

9.
Crosslinking core‐shell emulsions of waterborne fluorinated polyurethane‐acrylate (WFPUA) were successfully synthesized using a solvent‐free method. The crosslinkers of diacetone acrylamide and adipic dihydrazide were introduced into the WFPUA emulsions. The physical properties of hybrid emulsions such as the average particle size, stability, and viscosity were characterized. The core‐shell of crosslinking WFPUA emulsion synthesized in this study was observed by transmission electron microscopy. Then, the results of Fourier transform infrared spectroscopy, atomic force microscopy, and X‐ray photoelectron spectroscopy indicated that the fluorinated monomer (FA) had been polymerized into the crosslinking waterborne polyurethane‐acrylate polymer, and the fluorinated groups have evident enrichment on the film‐air surface with the increase of FA content. At the same time, the thermal properties, water repellent/antifouling properties, and mechanical properties were measured. Moreover, the thermal properties and the elongation are raised but tensile stress and shore hardness are decreased with the increase of FA content. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40970.  相似文献   

10.
Melamine–formaldehyde microcapsules containing eicosane were prepared by in situ polymerization. The characterization of the microcapsules, including the particle size and size distribution, morphology, thermal properties, and stability, was carried out. The prepared microcapsules were added to polyester knit fabrics by a conventional pad–dry–cure process to develop thermoregulating textile materials. The morphology, thermal properties, and laundering properties of the treated fabrics were also investigated. The microcapsules were spherical and had melamine–formaldehyde shells containing eicosane. The microcapsules were strong enough to secure capsule stability under stirring in hot water and alkaline solutions. The heat storage capacity increased as the concentration of the microcapsules increased. The thermoregulating fabrics had heat storage capacities of 0.91–4.44 J/g, which depended on the concentration of the microcapsules. The treated fabrics retained 40% of their heat storage capacity after five launderings. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2005–2010, 2005  相似文献   

11.
With a shell of poly (methyl methacrylate‐co‐hydroxyl ethyl acrylate) (PMMA‐HA), microencapsulated ammonium polyphosphate (MHAPP) is prepared by in situ polymerization. The core‐shell structure of the reactive flame retardant (FR) is characterized by Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The results of water leaching rate and water contact angle measurements show that ammonium polyphosphate (APP) is well coated by a hydrophobic shell. Due to the presence of active groups (–OH) and hydrophobic groups (–CH3) in shell, MHAPP exhibits better compatibility, flame retardancy, and water resistance compared with neat ammonium polyphosphate (APP) in rigid polyurethane foam (PU). Compression strength of PU/MHAPP with suitable loading is higher than that of PU/APP and PU, the reason is that the active groups in shell can improve the compatibility of MHAPP in PU composite. From thermal stability and residue analysis, it can be seen that the presence of reactive flame retardant shows positive effect on thermal stability of PU composite at high temperature, results also indicate that MHAPP can promote the carbonization formation efficiency of PU composite during combustion process compared with APP. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42800.  相似文献   

12.
Silica‐gel microencapsulated ammonium polyphosphate (SiOAPP), prepared by traditional sol–gel method, is still incompatible with polymer and easily attacked by moisture due to the presence of lots of hydroxyl group, so the traditional sol–gel method was optimized with polydimethyl siloxane (PDMS) to improve the related properties of microcapsules in this study. The results showed that the SiOAPP process and shell shape had changed significantly, and the APP microcapsules with silica/silicone carbon composite shell (SiOCAPP) was successfully prepared. The hydrophobicity of SiOCAPP was much better than that of the SiOAPP, the water contact angle of SiOAPP was 54°, while the water contact angle of SiOCAPP could reach 111°. The property reinforcements of the SiOCAPP in thermoplastic polyurethane (TPU) were studied and compared with the TPU/SiOAPP composites. The time to ignition reduced by 2 s and the maximal peak of heat release rate (pk‐HRR) increased by 4.4%, but the average heat release rate and total heat release, respectively, reduced by 15.5% and 31.4%, which was a great improvement on the flame retardancy of TPU, and the char residue rate, which is related to the condensed flame retardant effect, increased by 10%. Besides, the tensile strength and elongation at break increased by 11.8% and 5.84%, respectively. Generally, the sol–gel method modified by PDMS provided an novel method to improve the comprehensive properties of APP. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45742.  相似文献   

13.
Poly(melamine‐urea‐formaldehyde) (MUF) microcapsules used as self‐healing component of composites were prepared by in situ polymerization. The surface of MUF microcapsules was modified by 3‐aminopropyltriethoxy silane‐coupling agent (KH550). The interfacial interactions between MUF microcapsules and KH550 were studied by Fourier transform infrared spectra (FTIR). FTIR results show that the silane‐coupling agent molecule binds strongly to the MUF microcapsules surface. A chemical bond (Si? O? C) is formed by the reaction between the Si? OH and the hydroxyl group of MUF microcapsule. This modification improves the thermal properties of microcapsules. Optical microscope (OM) and scanning electron microscope (SEM) show that a thin layer is formed on the surface of MUF microcapsules. The interfacial adhesion effect between MUF microcapsules and unsaturated polyester matrix was investigated. MUF microcapsules disperse evenly in the composites. When crack propagated, the microcapsules were broken and the repair agent flowed from the microcapsules to react with the curing agent. Then the crosslinking structure was formed and the composite was repaired. The tensile properties, impact properties, and dynamic mechanical properties of composites have been evaluated. The results indicate that the silane‐coupling agent plays an important role in improving the interfacial performance between the microcapsules and the matrix, as well as the mechanical properties of the composites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Microcapsules containing healing agent have been used to develop the self‐healing composites. These microcapsules must possess special properties during the use of composites such as stability in surrounding, appropriate mechanical strength, and lower permeability. A new series of microcapsules containing dicyclopentadiene with chitosan/urea‐formaldehyde copolymer as shell materials were synthesized by in situ copolymerization technology. The microencapsulating mechanism was discussed and the process was explained. Also, the factors influencing the preparation of microcapsules were analyzed. The morphology and shell wall thickness of microcapsules were observed by using scanning electron microscopy. The size of microcapsules was measured using optical microscope and the size distribution was investigated based on data sets of at least 200 measurements. The chemical structure and thermal properties of microcapsules were characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis, respectively. The storage stability and isothermal aging experiment of microcapsules were also investigated. Results indicted that the chitosan/urea‐formaldehyde microcapsules containing dicyclopentadiene were synthesized successfully; the copolymerization occurred between chitosan and urea‐formaldehyde prepolymer. The microcapsule size is in the range of 10–160 μm with an average of 45 μm. The shell thickness of microcapsules is in the range of 1–7 μm and the core content of microcapsules is 67%. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
With urea‐formaldehyde (UF) resin as walls and capsaicin as core substances, microcapsules were prepared based on in situ polymerization process. The morphology and size distribution of the microcapsules were analyzed by Fourier transform infrared spectroscopy, laser particle size analyzer, and scanning electron microscopy. The microcapsulated capsaicin (MC) agents had a mean diameter of about 30–50 μm. Moreover, the thermal properties of the MC agents were measured by differential scanning calorimetry and thermogravimetric analysis. It was demonstrated that the melting point and thermal stability of the MC agents were greatly improved compared with that of the uncovered capsaicin, which were caused by the encapsulating crosslinked UF resin over the surface. The shell formation mechanism and the effects of the process conditions such as U/F ratio, shearing force, and acidification time on the particle size of the MC agents were discussed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
To achieve reinforcement and coloring in one combined process of polymer production, a dye‐loaded shell powder (DPSP) based on Congo red and pearl shell powder was prepared and used as a versatile bio‐filler in low‐density polyethylene (LDPE). The DPSP was characterized by means of X‐ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric analysis. The mechanical, thermal, and colorimetric properties of prepared LDPE/DPSP composites were investigated as well. Adding DPSP could significantly increase the strength and stiffness of LDPE composites while giving an outstanding coloring performance. Moreover, the impact strength of LDPE composites was improved at lower filler loading rate, and the maximum incorporation content could reach 10 wt % with a good balance between toughness and stiffness of LDPE composites. The thermal performance studies confirmed an increase in thermal stability and heat resistance of LDPE composites with the incorporation of DPSP. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44118.  相似文献   

17.
The core‐shell fluorine‐containing polyacrylate latex was successfully synthesized by two‐stage semicontinuous emulsion copolymerization of methyl methacrylate (MMA), butylacrylate (BA), acrylic acid (AA), and dodecafluoroheptyl methacrylate (DFMA). The fluorine‐containing polyacrylate latex was characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential, thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC). The effects of AA content on monomer conversion, polymerization stability, particle size, corsslinking degree, carboxyl groups distributions (latex surface, aqueous phase or buried in latex), as well as mechanical properties and water absorption rate of latex film were investigated. The obtained fluorine‐containing polyacrylate latex exhibited core‐shell structure with a particle size of 120–150 nm. The introduction of AA was beneficial for the increase of monomer conversion and the polymerization stability, and had little effects on the mechanical property of latex film. However, the hydrophilicity of AA made the water resistance of latex film get bad. With the increase of AA content, the carboxyl groups preferred to distribute on aqueous phase, and the possibility of homogeneous nucleation increased and more oligomers particles were formed. Moreover, the oligomers would distribute to the latex and continued to grow up, making the latex morphology changed from spherical to plum blossom‐like. The core‐shell latex had two Tg corresponding to the rubber polyacrylate core and hard fluorine‐containing polyacrylate shell, and the latex film possessed excellent thermal stability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42527.  相似文献   

18.
In the present work, different compatibilizers, namely polyethylene‐graft‐maleic anhydride (PE‐g‐MA), polypropylene‐graft‐maleic anhydride (PP‐g‐MA), and polystyrene‐block‐poly(ethylene‐ran‐butylene)‐block‐polystyrene‐graft‐maleic anhydride (SEBS‐g‐MA) were used on green composites derived from biobased polyethylene and peanut shell (PNS) flour to improve particle–polymer interaction. Composites of high‐density polyethylene/peanut shell powder (HDPE/PNS) with 10 wt % PNS flour were compatibilized with 3 wt % of the abovementioned compatibilizers. As per the results, PP‐g‐MA copolymer lead to best optimized properties as evidenced by mechanical characterization. In addition, best particle–matrix interface interactions with PP‐g‐MA were observed by scanning electron microscopy (SEM). Subsequently HDPE/PNS composites with varying PNS flour content in the 5–30 wt % range with PP‐g‐MA compatibilizer were obtained by melt extrusion and compounding followed by injection molding and were characterized by mechanical, thermal, and morphological techniques. The results showed that PNS powder, leads to an increase in mechanical resistant properties (mainly, flexural modulus, and strength) while a decrease in mechanical ductile properties, that is, elongation at break and impact absorbed energy is observed with increasing PNS flour content. Furthermore, PNS flour provides an increase in thermal stability due to the natural antioxidant properties of PNS. In particular, composites containing 30 wt % PNS powder present a flexural strength 24% and a flexural modulus 72% higher than the unfilled polyethylene and the thermo‐oxidative onset degradation temperature is increased from 232 °C up to 254 °C thus indicating a marked thermal stabilization effect. Resultant composites can show a great deal of potential as base materials for wood plastic composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43940.  相似文献   

19.
Reduced graphene oxide (rGO) sheets were first modified with 2‐hydroxypropyltrimethyl ammonium chloride chitosan (HACC), and these modified rGO sheets (named HACC–rGO) were used as reinforcement materials and introduced to the walls of chitosan (CS) microcapsules. All of the monodisperse microcapsules were conveniently generated by a gas–liquid microfluidic technique. The results of scanning electron microscopy, X‐ray diffraction, and thermogravimetric analysis all demonstrate that the HACC–rGO sheets existed and were dispersed in the capsular shell. The HACC–rGO‐reinforced CS microcapsules showed better mechanical strength and better chemical stability with an α‐cyclodextrin solution than the CS microcapsules without HACC–rGO. Importantly, the HACC–rGO‐reinforced CS microcapsules exhibited a slower drug‐release behavior and provide a method for the control of the release rate of drug‐loaded microcapsules. In an in vitro cytotoxicity evaluation by a 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide assay, the Schwann cells still showed good cell viability after they were treated by extracts of the CS/HACC–rGO microcapsules with concentrations ranging from 0.02 to 2000 μg/mL. Therefore, the HACC–rGO‐reinforced CS microcapsules are promising for applications in the fields of drug delivery and controlled release. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44549.  相似文献   

20.
Double shell photochromic microcapsules were prepared by in situ polymerization with polyurethane and chitosan as inner and outer shell respectively. FT‐IR indicated that chitosan‐glutaraldehyde copolymer formed by imine and combined with polyurethane photochromic nanocapsules. The polyurethane‐chitosan microcapsules exhibited a near‐spherical shape, and the average particle size of nanocapsules was around 1.2 μm. The half‐life of azo compound increased from 135 to 340 min after encapsulated in polyurethane‐chitosan microcapsules. The polyurethane‐chitosan shell delayed the coloration process for 14 s compared with azo compound in ethanol, however, the absorbance of azo compound increased by 17.15% in polyurethane‐chitosan microcapsules. It decreased from 0.3486 to 0.1738 in ethanol during 20 s, however, it decreased from 0.4084 to 0.2625 in polyurethane‐chitosan microcapsules in 55 s when it reached steady state during decoloration process. Polyurethane‐chitosan double shell encapsulation is an effective route for improving the fatigue resistance, increasing the absorbance of azo compound. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40895.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号