首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of compatibilizer on the morphological, thermal, mechanical, and rheological properties of poly(methyl methacrylate) (PMMA)/poly(N‐methyl methacrylimide) (PMMI) (70/30) blends were investigated. The compatibilizer used in this study was styrene–acrylonitrile–glycidyl methacrylate (SAN‐GMA) copolymer. Morphological characterization of the PMMA/PMMI (70/30) blend with SAN‐GMA showed a decrease in PMMI droplet size with an increase in SAN‐GMA. The glass‐transition temperature of the PMMA‐rich phase became higher when SAN‐GMA was added up to 5 parts per hundred resin by weight (phr). The flexural and tensile strengths of the PMMA/PMMI (70/30) blend increased with the addition of SAN‐GMA up to 5 phr. The complex viscosity of the PMMA/PMMI (70/30) blends increased when SAN‐GMA was added up to 5 phr, which implies an increase in compatibility between the PMMA and PMMI components. From the weighted relaxation spectrum, which was obtained from the storage modulus and loss modulus, the interfacial tension of the PMMA/PMMI (70/30) blend was calculated using the Palierne emulsion model and the Choi‐Schowalter model. The results of the morphological, thermal, mechanical, and rheological studies and the values of the interfacial tension of the PMMA/PMMI (70/30) blends suggest that the optimum compatibilizer concentration of SAN‐GMA is 5 phr. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43856.  相似文献   

2.
Poly(lactide)/poly(methyl methacrylate)/silica (PLA/PMMA/SiO2) composites were fabricated using a twin‐screw extruder. Nanosilica particles were incorporated to improve the toughness of the brittle PLA, and a chain extender reagent (Joncryl ADR 4368S) was used to reduce the hydrolysis of the PLA during fabrication. Highly transparent PLA and PMMA were designated to blend to obtain the miscible and transparent blends. To estimate the performance of the PLA/PMMA/SiO2 composites, a series of measurements was conducted, including tensile and Izod impact tests, light transmission and haze measurements, thermomechanical analysis, and isothermal crystallization behavior determination. A chain extender increases the ultimate tensile strength of the PLA/PMMA/SiO2 composites by ~43%, and both a chain extender and nanosilica particles increase Young's modulus and Izod impact strength of the composites. Including 0.5 wt % nanosilica particles increase the elongation at break and Izod impact strength by ~287 and 163%, respectively, compared with those of the neat PLA. On account of the mechanical performances, the optimal blending ratio may be between PLA/PMMA/SiO2 (90/10) and PLA/PMMA/SiO2 (80/20). The total light transmittance of the PLA/PMMA/SiO2 composites reaches as high as 91%, indicating a high miscible PLA/PMMA blend. The haze value of the PLA/PMMA/SiO2 composites is less than 35%. Incorporating nanosilica particles can increase the crystallization sites and crystallinities of the PLA/PMMA/SiO2 composites with a simultaneous decrease of the spherulite dimension. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42378.  相似文献   

3.
Glycidyl methacrylate functionalized acrylonitrile–butadiene–styrene (ABS‐g‐GMA) particles were prepared and used to toughen polylactide (PLA). The characteristic absorption at 1728 cm?1 of the Fourier transform infrared spectra indicated that glycidyl methacrylate (GMA) was grafted onto the polybutadiene phase of acrylonitrile–butadiene–styrene (ABS). Chemical reactions analysis indicated that compatibilization and crosslinking reactions took place simultaneously between the epoxy groups of ABS‐g‐GMA and the end carboxyl or hydroxyl groups of PLA and that the increase of GMA content improved the reaction degree. Scanning electron microscopy results showed that 1 wt % GMA was sufficient to satisfy the compatibilization and that ABS‐g‐GMA particles with 1 wt % GMA dispersed in PLA uniformly. A further increase of GMA content induced the agglomeration of ABS‐g‐GMA particles because of crosslinking reactions. Dynamic mechanical analysis testing showed that the miscibility between PLA and ABS improved with the introduction of GMA onto ABS particles because of compatibilization reactions. The storage modulus decreased for the PLA blends with increasing GMA content. The decrease in the storage modulus was due to the chemical reactions in the PLA/ABS‐g‐GMA blends, which improved the viscosity and decreased the crystallization of PLA. A notched impact strength of 540 J/m was achieved for the PLA/ABS‐g‐GMA blend with 1 wt % GMA, which was 27 times than the impact strength of pure PLA, and a further increase in the GMA content in the ABS‐g‐GMA particles was not beneficial to the toughness improvement. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Morphologies of polymer blends based on polystyrene‐b‐ polybutadiene‐b ‐poly(methyl methacrylate) (SBM) triblock copolymer were predicted, adopting the phase diagram proposed by Stadler and co‐workers for neat SBM block copolymer, and were experimentally proved using atomic force microscopy. All investigated polymer blends based on SBM triblock copolymer modified with polystyrene (PS) and/or poly(methyl methacrylate) (PMMA) homopolymers showed the expected nanostructures. For polymer blends of symmetric SBM‐1 triblock copolymer with PS homopolymer, the cylinders in cylinders core?shell morphology and the perforated lamellae morphology were obtained. Moreover, modifying the same SBM‐1 triblock copolymer with both PS and PMMA homopolymers the cylinders at cylinders morphology was reached. The predictions for morphologies of blends based on asymmetric SBM‐2 triblock copolymer were also confirmed experimentally, visualizing a spheres over spheres structure. This work presents an easy way of using PS and/or PMMA homopolymers for preparing nanostructured polymer blends based on SBM triblock copolymers with desired morphologies, similar to those of neat SBM block copolymers. © 2017 Society of Chemical Industry  相似文献   

5.
The grafting of the methyl methacrylate (MMA) monomer onto natural rubber using potassium persulfate as an initiator was carried out by emulsion polymerization. The rubber macroradicals reacted with MMA to form graft copolymers. The morphology of grafted natural rubber (GNR) was determined by transmission electron microscopy and it was confirmed that the graft copolymerization was a surface‐controlled process. The effects of the initiator concentration, reaction temperature, monomer concentration, and reaction time on the monomer conversion and grafting efficiency were investigated. The grafting efficiency of the GNR was determined by a solvent‐extraction technique. The natural rubber‐g‐methyl methacrylate/poly(methyl methacrylate) (NR‐g‐MMA/PMMA) blends were prepared by a melt‐mixing system. The mechanical properties and the fracture behavior of GNR/PMMA blends were evaluated as a function of the graft copolymer composition and the blend ratio. The tensile strength, tear strength, and hardness increased with an increase in PMMA content. The tensile fracture surface examined by scanning electron microscopy disclosed that the graft copolymer acted as an interfacial agent and gave a good adhesion between the two phases of the compatibilized blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 428–439, 2001  相似文献   

6.
7.
Blends of polylactide with poly(methyl methacrylate), PLA/PMMA, were prepared by a semi‐industrial twin screw extruder and afterwards were injection molded. Blends were studied using different techniques as Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), and mechanical properties by means of tensile and impact tests, were also studied. This work helped better understanding of apparently contradictory results reported in the literature for PLA/PMMA blends prepared by melt compounding. DSC first heating scan and DMA results showed partially miscible blends, whereas the second DSC heating scan showed miscible blends. For miscible blends, Tg values were predicted using Gordon‐Taylor equation. On the other hand, Small and Van Krevelen approaches were used to estimate the solubility parameters of neat PLA and neat PMMA, and Flory‐Huggins interaction parameter was calculated from solubility parameters. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42677.  相似文献   

8.
Melt blending of poly(lactic acid) (PLA) and poly(epichlorohydrin‐co‐ethylene oxide) copolymers (ECO) was performed to improve the toughness and crystallization of PLA. Thermal and scanning electron microscopy analysis indicated that PLA and ECO were not thermodynamically miscible but compatible to some extent. The addition of a small amount of ECO accelerated the crystallization rate and increased the final crystallinity of PLA in the blends. Significant enhancement in toughness and flexibility of PLA were achieved by the incorporation of the ECO elastomer. When 20 wt% ECO added, the impact strength increased from 5 kJ/m2 of neat PLA to 63.9 kJ/m2, and the elongation at break increased from 5% to above 160%. The failure mode changed from brittle fracture of neat PLA to ductile fracture of the blend. Rheological measurement showed that the melt elasticity and viscosity of the blend increased with the concentration of ECO. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers.  相似文献   

9.
The inherent brittleness of poly(lactic acid) (PLA) limits its wide application in many fields. Here, high‐impact PLA/ethylene–methyl acrylate–glycidyl methacrylate random terpolymer (EMA–GMA) blends were prepared with the addition of a small amount of N,N‐dimethylstearylamine (DMSA) catalyst. It was found that the notched impact resistance of various PLA/EMA–GMA blends could be considerably improved by adding DMSA. In particular, the notched Izod impact strength of the blend with 20 wt% EMA–GMA increased from 35.6 to 83.5 kJ m?2 by adding 0.2 wt% DMSA. Reactive compatibilization between PLA and EMA–GMA with DMSA was studied using Fourier transform infrared spectroscopy. The results indicated that DMSA promoted the reaction between the epoxide group of EMA–GMA and end groups (–OH, –COOH) of PLA. This considerably improved the interfacial adhesion, leading to better wetting of the dispersed phase by the PLA matrix and finer dispersed EMA–GMA particles. Therefore, the significant increase in notched impact strength was attributed to the effective reactive compatibilization promoted by DMSA. © 2013 Society of Chemical Industry  相似文献   

10.
Ternary blends of polyoxymethylene (POM), polyolefin elastomer (POE), and glycidyl methacrylate grafted high density polyethylene (GMA‐g‐HDPE) with various component ratios were studied for their mechanical and thermal properties. The size of POE dispersed phase increased with increasing the elastomer content due to the observed agglomeration. The notched impact strength demonstrated a parabolic tendency with increasing the elastomer content and reached the peak value of 10.81 kJ/m2 when the elastomer addition was 7.5 wt%. The disappearance of epoxy functional groups in the POM/POE/GMA‐g‐HDPE blends indicated that GMA‐g‐HDPE reacted with the terminal hydroxyl groups of POM and formed a new graft copolymer. Higher thermal stability was observed in the modified POM. Both storage modulus and loss modulus decreased from dynamic mechanical analysis tests while the loss factor increased with increasing the elastomer content. GMA‐g‐HDPE showed good compatibility between the POM matrix and the POE dispersed phase due to the reactive compatibilization of the epoxy groups of GMA and the terminal hydroxyl groups of POM. A POM/POE blend without compatibilizer was researched for comparison, it was found that the properties of P‐7.5(POM/POE 92.5 wt%/7.5 wt%) were worse than those of the blend with the GMA‐g‐HDPE compatibilizer. POLYM. ENG. SCI., 57:1119–1126, 2017. © 2017 Society of Plastics Engineers  相似文献   

11.
A core-shell modifier with the cross-linked acrylate and silicone copolymer as the core and polymethyl methacrylate (PMMA) as the shell (PASi-g-PMMA) was used to toughen the brittle polylactide (PLA). In addition, the copolymer of methyl methacrylate (MMA) and glycidyl methacrylate (GMA) (MG) was utilized to further enhance the modification efficiency of the PASi-g-PMMA. The MG copolymer played the double roles of compatibilizer and chain extender, which not only improved the interfacial adhesion between the PLA and PASi-g-PMMA particles, but also increased the molecular weight and chain entanglement of the PLA. Compared with the PASi-g-PMMA toughened PLA blend, the PLA/PASi-g-PMMA/MG blends showed much higher heat-resistance, melt strength, transparency, toughness and stiffness balance. When the PASi-g-PMMA content was 20 wt%, 20 wt% MG increased the glass transition temperature (Tg), complex viscosity (η*), transparency, impact and tensile strength of PLA/PASi-g-PMMA blend from 60.1°C, 1.9 × 103 Pa·s, 76.1%, 748 J/m and 37 MPa to 71.5°C, 0.5 × 104 Pa·s, 78.4%, 860 J/m and 45 MPa for the PLA/PASi-g-PMMA/MG blend. This research provided a facile and practical method to overcome the shortcomings of the PLA and promoted its application in broader fields.  相似文献   

12.
The present study focuses on the improvement of impact properties and particularly on the interaction between crystallinity development and mechanical properties of impact modified polylactide (PLA). The PLA was toughened by the addition of a random linear ether‐amide copolymer (PEBAX 3533?). A random copolymer of ethylene, methyl‐acrylate, and glycidyl‐methacrylate (LOTADER AX8900?) was also used to reactively compatibilize the ether‐amide copolymer with the PLA matrix. Melt rheology of the blends was investigated in small amplitude oscillatory shear and showed that the impact modifier could significantly influence the viscoelastic response of the material. The Izod impact resistance and tensile properties were measured using standard testing protocols. The blend morphology was also examined using scanning electron microscopy on cryofractured and microtomed surfaces, while the crystalline morphology was assessed by optical microscopy. A sub‐micron dispersion of the impact modifier was achieved in the presence of the reactive compatibilizer. Significantly improved impact strength was found with 10 wt % impact modifier. High crystallinity samples showed the highest impact strength with values reaching 68 kJ/m2, hence a 20‐fold improvement with respect to the neat PLA. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44677.  相似文献   

13.
Poly(ethylene‐co‐propylene) (EPR) was functionalized to varying degrees with glycidyl methacrylate (GMA) by melt grafting processes. The EPR‐graft‐GMA elastomers were used to toughen poly(butylene terephthalate) (PBT). Results showed that the grafting degree strongly influenced the morphology and mechanical properties of PBT/EPR‐graft‐GMA blends. Compatibilization reactions between the carboxyl and/or hydroxyl of PBT and epoxy groups of EPR‐graft‐GMA induced smaller dispersed phase sizes and uniform dispersed phase distributions. However, higher degrees of grafting (>1.3) and dispersed phase contents (>10 wt%) led to higher viscosities and severe crosslinking reactions in PBT/EPR‐graft‐GMA blends, resulting in larger dispersed domains of PBT blends. Consistent with the change in morphology, the impact strength of the PBT blends increased with the increase in EPR‐graft‐GMA degrees of grafting for the same dispersion phase content when the degree of grafting was below 1.8. However, PBT/EPR‐graft‐GMA1.8 displayed much lower impact strength in the ductile region than a comparable PBT/EPR‐graft‐GMA1.3 blend (1.3 indicates degree of grafting). Morphology and mechanical results showed that EPR‐graft‐GMA 1.3 was more suitable in improving the toughness of PBT. SEM results showed that the shear yielding properties of the PBT matrix and cavitation of rubber particles were major toughening mechanisms. Copyright © 2006 Society of Chemical Industry  相似文献   

14.
Biodegradable polymer blends based on biosourced polymers, namely polylactide (PLA) and poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P(3HB‐co‐4HB)), were prepared by melt compounding. The effects of P(3HB‐co‐4HB) on the miscibility, phase morphology, thermal behavior, mechanical properties, and biodegradability of PLA/P(3HB‐co‐4HB) blends were investigated. The blend was an immiscible system with the P(3HB‐co‐4HB) domains evenly dispersed in the PLA matrix. However, the Tg of P(3HB‐co‐4HB) component in the blends decreased compared with neat P(3HB‐co‐4HB), which might be attributed to that the presence of the phase interface between PLA and P(3HB‐co‐4HB) resulted in enhanced chain mobility near interface. The addition of P(3HB‐co‐4HB) enhanced the cold crystallization of PLA in the blends due to the nucleation enhancement of PLA caused by the enhanced chain mobility near the phase interface between PLA and P(3HB‐co‐4HB) in the immiscible blends. With the increase in P(3HB‐co‐4HB) content, the blends showed decreased tensile strength and modulus; however, the elongation at beak was increased significantly, indicating that the inherent brittlement of PLA was improved by adding P(3HB‐co‐4HB). The interesting aspect was that the biodegradability of PLA is significantly enhanced after blends preparation. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

15.
This paper deals with the synthesis of a series of six‐armed star diblock copolymers based on poly(l ‐lactide) (PLLA) and poly(?‐caprolactone) (PCL) by ring‐opening polymerization using stannous octoate as catalyst and the preparation of polylactide (PLA)/PCL linear blends using a solution blending technique, while keeping the PLA‐to‐PCL ratio comparable in both systems. The thermal, rheological and mechanical properties of the copolymers and the blends were comparatively studied. The melting point and the degree of crystallinity were found to be lower for the copolymers than the blends due to poor folding property of star copolymers. Dynamic rheology revealed that the star polymers have lower elastic modulus, storage modulus and viscosity as compared to the corresponding blends with similar composition. The blends show two‐phase dispersed morphology whereas the copolymers exhibited microphase separated morphology with elongated (worm‐like) microdomains. The crystalline structures of the copolymers were characterized by larger crystallites than their blend counterparts, as estimated using Sherrer's equation based on wide‐angle X‐ray diffraction data. © 2016 Society of Chemical Industry  相似文献   

16.
Technical renewable poly(l ‐lactide) (PLA)‐based blends represent an elegant way to achieve attractive properties for engineering applications. Recently, the miscibility between PLA and poly(methyl methacrylate) (PMMA) gave rise to new formulations with enhanced thermo‐mechanical properties but their high brittleness still remains a challenge to be overcome. This work here focuses on rubber‐toughened PLA/PMMA formulations for injection‐molding processes upon the addition of a commercially available ethylene‐acrylate impact modifier (BS). The miscibility between PLA and PMMA is not altered by the presence of BS but the incorporation of BS (17% by weight) into a PLA/PMMA matrix could enhance both ductility and toughness of PLA/PMMA blends for PMMA content up to 50 wt %. An optimum range of particle sizes (dn ~0.5 µm) of the dispersed domains for high impact toughness is identified. These bio‐based ternary blends appear as promising alternatives to petro‐sourced blends such as ABS‐based blends in engineering injection‐molding parts. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43402.  相似文献   

17.
In this work, a mutually miscible third polymer, poly(methyl methacrylate) (PMMA), was incorporated into an immiscible poly(vinylidene fluoride)/polylactide (PVDF/PLA) blend (weight ratio 70:30). It was found that incorporation of PMMA in an appropriate amount (30–60 wt%) induced a marked improvement in fracture toughness. A five times enlargement of the elongation at break can be achieved by introducing 30 wt% PMMA. In order to understand the underlying toughening mechanism, SEM, dynamic mechanical analysis (DMA), XRD and DSC were applied to study the variations in morphology, the interaction between the three components and the crystallization behavior. SEM micrographs showed that the PMMA preferred to locate at the interface of PVDF and PLA, which was attributed to the mutual miscibility of PVDF with PMMA and PLA. Furthermore, a variety of thermal characteristics such as Tg and Tm induced by the entanglement of PVDF, PMMA and PLA at the interface were illustrated in DMA and DSC curves. Obviously, the interface consisting of the entanglement of PVDF, PLA and PMMA acted as a linkage to improve interfacial adhesion, which was regarded as the main toughening mechanism. This work provides a potential strategy to realize the interfacial enhancement of an immiscible blend via the incorporation of a mutually miscible third polymer. © 2016 Society of Chemical Industry  相似文献   

18.
Organically‐modified montmorillonite clay nanocomposites of poly(styrene‐co‐acrylonitrile) (SAN), poly(methyl methacrylate) (PMMA) and SAN/PMMA miscible blend are investigated. Structure characteristics at the nanoscale and microscale and thermal and tensile properties are studied as a function of polymer blend composition and filler loading fraction. Blend miscibility and Tg are unaffected by up to 10% by wt. organoclay. Thermal degradation stability increases with SAN content and exhibits an optimum value of clay loading. Stiffness shows significant improvement. Tensile strength and elongation‐at‐break suffer as a result of nanocomposite formation. Modulus shows a maximum enhancement of 57% (5 ± 0.06 GPa at 10 wt% filler, 20/80 SAN/PMMA) and varies linearly with clay fraction for all compositions of matrix phase. Predictions of Halpin–Tsai composite model are in excellent agreement with the experimental behavior over full range of polymer blend composition. Fundamental aspects of a polymer blend–clay nanocomposite are clarified, such as lack of additional synergy between clay platelets and matrix, and tensile ductility reduction, compared with polymer–clay system. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

19.
A poly(methyl methacrylate) (PMMA)‐b‐poly[2‐(N,N‐dimethylamino) ethyl methacrylate] (PDMAEMA) block copolymer was successfully synthesized by a reversible addition–fragmentation chain‐transfer method. The resulting copolymer was used to prepare poly(vinylidene fluoride) blend membranes via a phase‐inversion technique. The polymorphism, structure, and properties of the blend membranes were investigated by Fourier transform infrared spectrometry, scanning electron microscopy (SEM), ζ potential analysis, and filtration. The results indicate that PMMA‐b‐PDMAEMA could migrate onto the surface of the membrane during the coagulation process, and more of the β‐crystal phase appeared with the increase of the block copolymer in the membranes. The surface morphology and cross section of the membranes were also affected by the copolymer, as shown by SEM. The ζ‐potential results show that the surface charges of the membrane could be changed from positive to negative at an isoelectric point as the pH increased. The blend membrane also exhibited good pH sensitivity, and its water flux showed a great dependence on pH. The filtration experiment also indicated that the blend membrane had good hydrophilicity and antifouling properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40685.  相似文献   

20.
The objective of this work was to study the miscibility and phase‐separation temperatures of poly(styrene‐co‐maleic anhydride) (SMA)/poly(vinyl methyl ether) (PVME) and SMA/poly(methyl methacrylate) (PMMA) blends with differential scanning calorimetry and small‐angle light scattering techniques. We focused on the effect of SMA partial imidization with aniline on the miscibility and phase‐separation temperatures of these blends. The SMA imidization reaction led to a partially imidized styrene N‐phenyl succinimide copolymer (SMI) with a degree of conversion of 49% and a decomposition temperature higher than that of SMA by about 20°C. We observed that both SMI/PVME and SMI/PMMA blends had lower critical solution temperature behavior. The imidization of SMA increased the phase‐separation temperature of the SMA/PVME blend and decreased that of the SMA/PMMA blend. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号