首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
The oxidation behavior of Ni-Cr alloys with various chromium concentrations and particle sizes of a dispersion of 10 vol.% Al2O3 was observed in 1 atm of oxygen at 1000°C. This study was intended to determine the critical chromium concentration to form a protective Cr2O3 oxide layer for different Al2O3 particle sizes. The oxidation rate of Ni-Cr alloys containing 10 vol.% Al2O3 followed a parabolic rate law and a Cr2O3 protective layer continuously formed when the oxidation rate decreased rapidly. Times to form a continuous and protective Cr2O3 layer during the initial oxidation shortened as the size of the dispersion decreased. The critical chromium concentration to form a protective Cr2O3 layer in the oxide scale was 69 wt.% and was related strongly to the particle size of the Al2O3 dispersion.  相似文献   

2.
A composite coating of aluminide-yttrium has shown excellent corrosion resistance in a cyclic high-temperature hot-corrosion environment. To understand the effect of yttrium on the stability of the composite coating, the specimens were prepared with various coating parameters of Y thickness, sequence of post heat treatment and surface condition before Y-ion plating. Performance of the composite coating was evaluated by isothermal oxidation and cyclic high-temperature hot corrosion. Isothermal-oxidation-test results show that the Y in the composite coating helps to form a thick and dense Al2O3 scale which is ductile and resistant to thermal stress. The Y in Al2O3 may act as a donor which leads to an increase in concentration of interstitial oxygen and, thus, increases in oxidation rate. The presence of Y2O3 and (Y, Al) O-type compounds in grain boundaries of Al2O3 and boundaries between the Al2O3 and NiAl effectively prohibits the fast diffusion of oxidants (such as O and S) and Al along grain boundaries. Consequently, it may induce slow diffusion through the matrix, and thus the corrosion resistance of the composite coating under cyclic hot corrosion increases substantially.  相似文献   

3.
采用热分解法制备Ti/IrO2-PbO2阳极,深入研究硫酸、硝酸、盐酸、草酸、盐酸/草酸蚀刻顺序对Ti/IrO2-PbO2阳极性能的影响规律,借助场发射扫描电子显微镜、X射线衍射、循环伏安法、线性扫描伏安法、电化学交流阻抗谱、加速寿命试验等考察钛基体及氧化物涂层的形貌、结构及电化学行为。结果表明:钛基体在双酸中的腐蚀效果优于单酸,获得更致密更均匀的表面结构。双酸腐蚀使钛表面拥有完整的TiHx晶型,有助于提高涂层负载量,增强活性层与基体的结合力。改变双酸蚀刻顺序对阳极电化学性能有一定的影响。草酸/盐酸蚀刻剂处理Ti/IrO2-PbO2阳极具有最佳的电催化活性与最长的加速寿命。  相似文献   

4.
The current work investigated the impact of surface condition on the metal dusting behavior of chromia forming alloys. Five commercial alloys were included in the study, wrought 800H, 353MA, and cast G4859, G4852 Micro, and ET45 Micro, these alloys have a chromium and nickel content in the range of 20–35 wt% and 32–45 wt%, respectively. The wrought alloys were tested in a pickled state and the cast alloys with a machined surface, all the alloys were tested using a laboratory ground surface condition for comparison. The exposures were performed using a gas with a composition of 44 vol% CO, 52 vol% H2, 2 vol% CO2, and 2 vol% H2O at a temperature of 600 °C and a pressure of 5.5 bar. The samples were periodically characterized by measuring the mass loss, pit density, pit size, and pit depth. The results show that the pickled surfaces were sensitive toward metal dusting attack while the machined and the ground surfaces had better resistance. This shows that the surface pre‐treatment plays a crucial role.  相似文献   

5.
The beneficial effect of dispersions of reactive-metal oxide particles on the adhesion of Cr2O3 and Al2O3 scales formed on heat-resisting alloys is wellknown. It has been shown that an Al2O3 dispersion in an alloy can improve the adhesion of a Cr2O3 scale, and it is of particular interest in assessing the various theoretical proposals for the effect to determine whether such a dispersion can affect the adhesion of an Al2O3 scale. In this investigation, a Co–10% Cr–1 % Al alloy was first internally oxidized to form an Al2O3 dispersion. This alloy was then aluminized so that on subsequent oxidation an Al2O3 scale developed. It was shown that the dispersion did indeed improve the scale adhesion. The implications of this result are discussed.  相似文献   

6.
A study has been made of the effects of an intermediate, isothermal annealing treatment in argon on the oxidation kinetics of copper and nickel in 1 atm oxygen at 800 and 1100°C, respectively, using a semiautomatic microbalance. Changes in scale morphology and composition have been investigated using various physical techniques. The outer CuO layer formed on copper during oxidation dissociates very rapidly on annealing to give CU2O and oxygen since the partial pressure of oxygen in the gas is below the dissociation pressure of CuO but above that of Cu2O at 800°C. The CuO layer is quickly re-formed on reoxidation in oxygen. There are relatively few other changes in the oxide morphologies of either metal during annealing, although the small grains present in the scale adjacent to the metal after oxidation are able to grow. During reoxidation both metals show a reduction in oxidation rate constant because of the decrease in total cation vacancy concentration in the scale and the reduced cation vacancy gradient across the scale brought about by the reduction in oxygen partial pressure at the oxide-gas interface during annealing. The reoxidation rate constants following annealing approach those recorded prior to annealing as the equilibrium cation vacancy levels in the scales are reestablished in the oxidizing environment. Rosenberg's method for analysis of the kinetics of reoxidation has enabled the equilibrium concentrations and diffusion coefficients of cation vacancies in CU2O and NiO during oxidation in 1 atm oxygen at the appropriate temperatures to be estimated approximately. These show reasonable agreement with literature values.  相似文献   

7.
The oxidation behavior at 900°C of pure Cr and Cr implanted with 2×1016 Y ions/cm2 was studied. The kinetics of oxidation were measured thermogravimetrically and manometrically. The mechanisms of oxide growth were studied using18O-tracer oxidation experiments, and the composition and microstructure of the oxide scales were characterized by TEM and STEM. Segregation of Y cations at Cr2O3 grain boundaries was found to be the critical factor governing changes in the oxidation behavior of Cr upon the addition of Y. In the absence of Y, pure Cr oxidized by the outward diffusion of cations via grain boundaries in the Cr2O3 scale. When Y was present at high concentration in the scale, as when Cr implanted with 2×1010 Y ions/cm2 was oxidized, anion diffusion predominated. It is concluded that strain-induced segregation of Y at grain boundaries in the oxide reduced the cation flux along the grain boundaries. The rate of oxidation was reduced because the grain-boundary diffusivity of cations became lower than the grain-boundary diffusivity of the anions, which then controlled the rate of oxidation. Changes in the relative rates of Cr3+ and O2– transport, as well as a solute-drag effect exerted by Y on the oxide grain boundaries, resulted in changes in the microstructure of the oxide.  相似文献   

8.
The oxidation behavior of pure Cr and Cr implanted with Y was studied as a function of temperature (900 and 1025°C) and ion-implantation dose (1×1015 and 2×1016 Y ions/cm2). The microstructures of the Cr2O3 scales were affected by both of the variables studied. Yttrium ions segregated at the grain boundaries in the Cr2O3 scales formed on the implanted alloys and the concentration of Y at the grain boundaries decreased with a decrease in the dose of implanted Y. The mechanism of growth of the Cr2O3 scales was altered by the presence of the Y ions at the Cr2O3 grain boundaries only when a critical concentration of Y at the grain boundaries was exceeded.  相似文献   

9.
The pesting behavior of MoSi2 and Mo(Si,Al)2 has been examined in air at 773 K to clarify the origin and mechanism of pesting phenomena and the effect of aluminum on pesting phenomena. The initial cracks play a much more important role than the grain boundaries and the initial oxide layer in pesting. Mo and Si oxidize to amorphous Mo-Si-O simultaneously with about a 200% volume expansion. Therefore, large stress appears at the cracktips and induce many new cracks. MoO3 vaporizes from the Mo-Si-O layer on the external surface and crack surfaces causing the oxides in the initial cracks to become porous. Oxygen has a short-circuit path to enter the sample in the cracks. Therefore, the partial pressure of oxygen is sufficiently high to allow oxidation of Mo in the materials. The platelet-like MoO3 grows on the external surface and also in the cracks. Finally, the sample distintegrates into powder. Pesting of Mo(Si,Al)2 occurs in the same way, however, its rate is much lower than that of MoSi2. The role of Al is to decrease the initial crack density of the samples from the melt. Other effects of Al might be to decrease the oxygen flux toward the oxide-intermetallic interface and to increase the plasticity of the amorphous oxide being formed in the cracks.  相似文献   

10.
The non-isothermal oxidation behavior of electrolytic-grade iron and Fe-Cr alloys in dry air has been studied using linear heating rates of 6 K/min, 10 K/ min, and 15 K/min up to a final temperature of 1273–1473 K. Some of the iron and iron-chromium alloy samples were given a surface treatment by dipping them in an aqueous solution containing both Cr and Al ions before their oxidation studies. This pretreatment has resulted in improved oxidation resistance and scale adherence as depicted by no scale rupture even after a second thermal cycle. Mass changes were recorded gravimetrically, and scales have been characterized by SEM, EPMA, and x-ray diffraction analyses.  相似文献   

11.
V3O7·H2O@C core-shell materials have been synthesized using V3O7·H2O nanobelts as the cores and glucose as the source of carbon via an environmental hydrothermal method. The as-obtained V3O7·H2O@C core-shell materials were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), elemental analysis (EA), Fourier transform infrared spectroscopy (FT-IR) and Raman spectrum. The influences of the reaction temperature, concentration of glucose and reaction time on the morphologies of the samples were respectively discussed in detail. The possible formation mechanism of V3O7·H2O@C was proposed according to our experimental results. Furthermore, the effect of V3O7·H2O and V3O7·H2O@C on the thermal decomposition of ammonium perchlorate (AP) were investigated by thermal gravimetric analyzer (TG) and differential thermal analysis (DTA). The thermal decomposition temperatures of AP in the presence of V3O7·H2O and V3O7·H2O@C were reduced by 70 and 89 °C, respectively, which indicates that V3O7·H2O@C core-shell composites have higher activity than V3O7·H2O.  相似文献   

12.
The importance of chemical composition and microstructure on CO2 corrosion of carbon and low alloy steels has been widely recognized, still contradictory results can be found in the literature. The aim of this work is to assess the relationship between microstructure, surface condition and inhibitor efficiency in CO2 corrosion. A C-Mn steel with two different microstructures was tested in a deoxygenated 5% wt. NaCl solution saturated with CO2 at 40 °C, pH 6. A commercial imidazoline-based inhibitor was added after different pre-corrosion periods. The results obtained showed that pre-corrosion decreases the inhibitor efficiency, but that its impact is microstructure dependent.  相似文献   

13.
This article describes the effect of carbon nanotubes (CNTs) outer surface oxidation on the morphology and properties of poly(N-vinylcarbazole) (PNVC)-coated individual multi-walled CNT (MWCNT) nanocables. Surface oxidation of MWCNTs has been carried out by refluxing MWCNTs with 5 M nitric acid (HNO3) at 80 °C for 1 h. The PNVC-coated MWCNT nanocables are synthesized by in situ solid-state polymerization of N-vinylcarbazole monomers in the presence of oxidised MWCNTs (o-MWCNTs) at an elevated temperature. The PNVC-coated MWCNT nanocables are characterized by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning and transmission electron microscopes, photo-luminescence spectroscopy, and direct-current conductivity measurements. Results show that the uniform nanolayer coating of PNVC decreases the inherent bulk conductivity of MWCNTs, but significantly increases the optical properties of MWCNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号