首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 736 毫秒
1.
Biomass gasification and subsequent conversion of this syngas to liquid hydrocarbons using Fischer–Tropsch (F–T) synthesis is a promising source of hydrocarbon fuels. However, biomass-derived syngas is different from syngas obtained from other sources such as steam reforming of methane. Specifically the H2/CO ratio is less than 1/1 and the CO2 concentrations are somewhat higher. Here, we report the use of Fe-based F–T catalysts for the conversion of syngas produced by the air-blown, atmospheric pressure gasification of southern pine wood chips. The syngas from the gasification step is compressed and cleaned in a series of sorbents to produce the following feed to the F–T step: 2.78 % CH4, 11 % CO2, 15.4 % H2, 21.3 % CO, and balance N2. The relatively high level of CO2 suggests the need to use catalysts that are active for CO2 hydrogenation as well is resistant to oxidation in presence of high levels of CO2. The work reported here focuses on the effect of these different structural promoters on iron-based F–T catalysts with the general formulas 100Fe/5Cu/4K/15Si, 100Fe/5Cu/4K/15Al and 100Fe/5Cu/4K/15Zn. Although the effect of Si, Al or Zn on iron-based F–T catalysts has been examined previously for CO+CO2 hydrogenation, we have found no direct comparison of these three structural promoters, nor any studies of these promoters for a syngas produced from biomass. Results show that catalysts promoted with Zn and Al have a higher extent of reduction and carburization in CO and higher amount of carbides and CO adsorption as compared to Fe/Cu/K/Si. This resulted in higher activity and selectivity to C5+ hydrocarbons than the catalyst promoted with silica.  相似文献   

2.
Dimethyl ether (DME), which is an excellent green diesel fuel alternate, is synthesized following a direct synthesis route from synthesis gas, by using a bi-functional catalyst mixture, which was composed of a silicotungstic acid incorporated mesoporous catalyst [TRC-75(L)] and a commercial Cu–Zn based catalyst. Higher DME selectivity values were obtained by using TRC-75(L), than commercial γ-alumina at 50 bars. Presence of CO2 in the feed stream caused significant enhancement in DME selectivity. Results showed that DME selectivity of about 0.85 was obtained in a temperature range 250–275 °C in the presence of 10 % CO2. In fact, CO2 was also used as a resource to produce DME at lower temperatures. Reverse dry reforming and ethanol formation reactions were observed as side reactions, especially at higher temperatures. Results also proved that direct synthesis of DME from syngas has major CO conversion and DME selectivity advantages over the two step process involving consecutive methanol synthesis and dehydration steps.  相似文献   

3.
A comprehensive thermodynamic study was conducted to evaluate the comparative efficacy of methanol and dimethyl ether (DME) synthesis using CO2 rich syngas feed. The first part of our study included assessing the relative performances of the methanol synthesis system, two step DME synthesis system, and one step DME synthesis system in terms of the COx conversion and product yield (methanol/DME) based on the Gibbs free energy minimization approach. The wide range of composition of CO2-enriched syngas feed produced by the coal and biomass gasification was simulated using Aspen Plus and the following evaluation parameters were analyzed for a broad parameter range: reaction temperature (180–280°C), reaction pressure (10–80 bar), stoichiometry number (SN) (0–11), and CO2/(CO2 + CO) molar feed ratio (0–1) for isothermal as well as adiabatic conditions. Based on the equilibrium yield, one-step DME synthesis was discovered as the most viable process to utilize the co-gasification derived syngas effectively. In the second part of our study, the overall process efficiency was inspected through the process design of 1 tonnes per day (TPD) DME plant inclusive of heat integration, resulting in significant CO2 abatement and DME production with high product purity and minimum energy consumption. Consequently, one-step DME production via CO2-enriched syngas obtained through the coal or biomass gasification process is identified as the leading technology based on energy utilization and CO2 abatement.  相似文献   

4.
Simulation of DME synthesis from coal syngas by kinetics model   总被引:1,自引:0,他引:1  
DME (Dimethyl Ether) has emerged as a clean alternative fuel for diesel. There are largely two methods for DME synthesis. A direct method of DME synthesis has been recently developed that has a more compact process than the indirect method. However, the direct method of DME synthesis has not yet been optimized at the face of its performance: yield and production rate of DME. In this study it is developed a simulation model through a kinetics model of the ASPEN plus simulator, performed to detect operating characteristics of DME direct synthesis. An overall DME synthesis process is referenced by experimental data of 3 ton/day (TPD) coal gasification pilot plant located at IAE in Korea. Supplying condition of DME synthesis model is equivalently set to 80 N/m3 of syngas which is derived from a coal gasification plant. In the simulation it is assumed that the overall DME synthesis process proceeds with steadystate, vapor-solid reaction with DME catalyst. The physical properties of reactants are governed by Soave-Redlich-Kwong (SRK) EOS in this model. A reaction model of DME synthesis is considered that is applied with the LHHW (Langmuir-Hinshelwood Hougen Watson) equation as an adsorption-desorption model on the surface of the DME catalyst. After adjusting the kinetics of the DME synthesis reaction among reactants with experimental data, the kinetics of the governing reactions inner DME reactor are modified and coupled with the entire DME synthesis reaction. For validating simulation results of the DME synthesis model, the obtained simulation results are compared with experimental results: conversion ratio, DME yield and DME production rate. Then, a sensitivity analysis is performed by effects of operating variables such as pressure, temperature of the reactor, void fraction of catalyst and H2/CO ratio of supplied syngas with modified model. According to simulation results, optimum operating conditions of DME reactor are obtained in the range of 265–275 °C and 60 kg/cm2. And DME production rate has a maximum value in the range of 1–1.5 of H2/CO ratio in the syngas composition.  相似文献   

5.
Power plants using Victorian brown coal operate at low efficiency. Being reactive and spontaneously combustible, dried brown coals cannot be exported either. Synthesis of dimethyl ether (DME) is one option for the production of liquid fuel, an exportable product for power generation and transportation. This paper presents a steady-state process model for DME production using brown coal including drying, gasification and DME synthesis. The yield of the DME was a maximum for H2 to CO molar ratio of 1.41 and 0.81 at the gasifier outlet and the DME reactor inlet respectively. A process efficiency of 32% and CO2 emission of 2.91 kg/kg of DME was obtained. Improved yield of DME is achieved when CO2 is removed from the fuel gas prior to feeding to the synthesis reactor. Integration of waste heat and design of appropriate catalyst for gasification and DME synthesis can result in further improvements in the process.  相似文献   

6.
Dimethyl ether (DME) synthesis from syngas over a mixture of a methanol synthesis catalyst (ZnO, 25.10 wt %; AuO, 64.86 wt %; Al2O3, 10.04 wt %) and a methanol dehydration catalyst (γ-A12O3) has been investigated for one-, two-, and three-layer catalyst beds. There is a common regularity for these three variants: with an increasing temperature, the total CO conversion decreases, the CO-to-methanol conversion decreases, and the CO-to-DME conversion increases. The largest values of DME selectivity and DME yield have been attained with the three-layer bed. The highest DME yield has been obtained at 250–285°C. Use of a mechanical mixture of the methanol synthesis catalyst and alumina makes it possible to efficiently obtain DME from syngas ballasted with nitrogen (20 vol %) at an H2/CO ratio of 1, which is unfavorable for methanol synthesis. The DME yield on the syngas input basis in this case with the ballast gas (nitrogen or CO2) taken into account can be about 10 wt %.  相似文献   

7.
The National Renewable Energy Laboratory (NREL) is collaborating with both industrial and academic partners to develop technologies to help enable commercialization of biofuels produced from lignocellulosic biomass feedstocks. The focus of this paper is to report how various operating processes, utilized in-house and by collaborators, influence the catalytic activity during conditioning of biomass-derived syngas. Efficient cleaning and conditioning of biomass-derived syngas for use in fuel synthesis continues to be a significant technical barrier to commercialization. Multifunctional, fluidizable catalysts are being developed to reform undesired tars and light hydrocarbons, especially methane, to additional syngas, which can improve utilization of biomass carbon. This approach also eliminates both the need for downstream methane reforming and the production of an aqueous waste stream from tar scrubbing. This work was conducted with NiMgK/Al2O3 catalysts. These catalysts were assessed for methane reforming performance in (i) fixed-bed, bench-scale tests with model syngas simulating that produced by oak gasification, and in pilot-scale, (ii) fluidized tests with actual oak-derived syngas, and (iii) recirculating/regenerating tests using model syngas. Bench-scale tests showed that the catalyst could be completely regenerated over several reforming reaction cycles. Pilot-scale tests using raw syngas showed that the catalyst lost activity from cycle to cycle when it was regenerated, though it was shown that bench-scale regeneration by steam oxidation and H2 reduction did not cause this deactivation. Characterization by TPR indicates that the loss of a low temperature nickel oxide reduction feature is related to the catalyst deactivation, which is ascribed to nickel being incorporated into a spinel nickel aluminate that is not reduced with the given activation protocol. Results for 100?h time-on-stream using a recirculating/regenerating reactor suggest that this type of process could be employed to keep a high level of steady-state reforming activity, without permanent deactivation of the catalyst. Additionally, the differences in catalyst performance using a simulated and real, biomass-derived syngas stream indicate that there are components present in the real stream that are not adequately modeled in the syngas stream. Heavy tars and polycyclic aromatics are known to be present in real syngas, and the use of benzene and naphthalene as surrogates may be insufficient. In addition, some inorganics found in biomass, which become concentrated in the ash following biomass gasification, may be transported to the reforming reactor where they can interact with catalysts. Therefore, in order to gain more representative results for how a catalyst would perform on an industrially-relevant scale, with real contaminants, appropriate small-scale biomass solids feeders or slip-streams of real process gas should be employed.  相似文献   

8.
The characteristics of a tubular fixed-bed reactor for the direct synthesis of dimethyl ether (DME) from syngas obtained by coal gasification have been developed. DME synthesis test was conducted with a hybrid DME synthesis catalyst (CuO/ZnO/Al2O3 for methanol forming, γ-alumina for methanol dehydration) to understand the performance under the conditions of 6.0MPa, 260°C and GHSV=3,000 l/kg-cat·h. The H2 conversion and CO conversion were 85-92%, 37-45%, respectively. About 68-80% of DME selectivity was observed. DME synthesis reactor also operated at the productivity of 4.6-4.9 mol/kg-cat·h, which is slightly higher than that in the Peng’s prediction results in case of H2 : CO=0.5.  相似文献   

9.
A CuZnAl slurry catalyst was prepared directly from a solution of metal salts by an entirely liquid-phase method. The influence of heat-treatment atmospheres with different proportions of CO2 on the single-step synthesis of dimethyl ether (DME) from syngas was investigated and the catalysts were characterized by powder X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR), temperature-programmed desorption of ammonia (NH3-TPD), X-ray photoelectron spectrometry (XPS) and thermogravimetry-mass spectrometry (TG-MS). Results showed that the introduction of CO2 into the heat-treatment atmosphere made it easier to reduce the catalyst. It also adjusted the Cu0/Cu+ ratio on the catalyst surface, the CO2 reacting with the metallic carbide there to form CO, which then reduced part of the Cu2O to Cu. Moreover, it was concluded that the final phase structure of the catalyst and the Cu/Zn ratio on its surface depended mainly on its composition and the reaction environment and less so on the heat-treatment atmosphere. In the DME synthesis reaction, it was found that the introduction of CO2 into the heat-treatment atmosphere restrained the water–gas shift reaction and raised the DME selectivity. An optimal amount of CO2 in the heat-treatment atmosphere favored the increase of the DME space–time yield. The catalysts performed best when the heat-treatment atmosphere contained 50% CO2.  相似文献   

10.
Indonesian Roto Middle subbituminous coal was gasified in a pilot-scale dry-feeding gasification system and the produced syngas was purified with hot gas filtering and by low temperature desulfurization to the quality that can be utilized as a feedstock for chemical conversion. Roto middle coal produced syngas that has a typical composition of 36–38% CO, 14–16% H2, and 5–8% CO2. Particulates in syngas were 99.8% removed by metal filters at the operating temperature condition of 200–250°C. Sulfur containing compounds of H2S and COS in syngas were also desulfurized in the Fe chelate system to yield less than 0.5 ppm level. The full stream gasification and syngas purifying system has been successfully operated and thus can provide clean syngas for the research on the conversion of syngas to chemicals like DME and on the future IGFC using fuel cells. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

11.
The CO2 reforming of methane (in coke oven gas) on the coal char catalyst was performed in a fixed bed reactor at temperatures between 800 and 1200 °C under normal pressure. The effects of the coal char catalyst pretreatment and the ratio of CO2/CH4 were studied. Experimental results showed that the coal char was an effective catalyst for production of syngas, and addition of CO2 did not enhance the CH4 reforming to H2. It was also found that the product gas ratio of H2/CO is strongly influenced by the feed ratio of CO2/CH4. The modified coal char catalyst was more active during the CO2–CH4 reforming than the coal char catalyst based on the catalyst volume, furthermore the modified catalyst exhibited high activity in CO2–CH4 reforming to syngas. The conversion of methane can be divided into two stages. In the first stage, the conversion of CH4 gradually decreased. In the second stage, the conversion of methane maintained nearly constant. The conversion of CO2 decreased slightly during the overall reactions in CO2–CH4 reforming. The coal char catalyst is a highly promising catalyst for the CO2 reforming of methane to syngas.  相似文献   

12.
The catalytic reduction of CO2 by propane may occur via dry reforming to produce syngas (CO + H2) or oxidative dehydrogenation to yield propylene. Utilizing propane and CO2 as coreactants presents several advantages over conventional methane dry reforming or direct propane dehydrogenation, including lower operating temperatures and less coke formation. Thus, it is of great interest to identify catalytic systems that can either effectively break the C C bond to generate syngas or selectively break C H bonds to produce propylene. In this study, several precious and nonprecious bimetallic catalysts supported on reducible CeO2 were investigated using flow reactor studies at 823 K to identify selective catalysts for CO2-assisted reforming and dehydrogenation of propane.  相似文献   

13.
High‐temperature CO2 selective membranes offer potential for use to separate flue gas and produce a warm, pure CO2 stream as a chemical feedstock. The coupling of separation of CO2 by a ceramic–carbonate dual‐phase membrane with dry reforming of CH4 to produce syngas is reported. CO2 permeation and the dry reforming reaction performance of the membrane reactor were experimentally studied with a CO2–N2 mixture as the feed and CH4 as the sweep gas passing through either an empty permeation chamber or one that was packed with a solid catalyst. CO2 permeation flux through the membrane matches the rate of dry reforming of methane using a 10% Ni/γ‐alumina catalyst at temperatures above 750°C. At 850°C under the reaction conditions, the membrane reactor gives a CO2 permeation flux of 0.17 mL min?1 cm?2, hydrogen production rate of 0.3 mL min?1 cm?2 with a H2 to CO formation ratio of about 1, and conversion of CO2 and CH4, respectively, of 88.5 and 8.1%. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2207–2218, 2013  相似文献   

14.
《Fuel》2002,81(11-12):1605-1609
Dimethyl ether (DME), the target product of this study, has many advantages as diesel fuel. The aim of this study is to develop a catalytic process in which 90% CO conversion to DME and CO2 from syngas (3CO+3H2→DME+CO2) is attained at 1–3 MPa. In such a process, both recycling loop and compression of syngas can be omitted resulting in an economic process based on unused, dispersed and small-scale carbon resources. To overcome the equilibrium conversion limit we designed temperature-gradient reactor (TGR). In TGR, the temperature of the catalyst bed decreases along with the down flow of reaction gas. The performance of the catalyst in TGR was much higher than that in a conventional isothermal fixed bed reactor. For example, 90% CO conversion and high STY (1.1 kg MeOH eqiv./kg cat./h) was attained at the same time in TGR at 550–510 K, 3 MPa.  相似文献   

15.
Recently, DME has received attention as a clean fuel and is now considered an alternative fuel for diesel engines. DME diesels need de-NOx catalysts such as LNT (Lean NOx Trap) and SCR (Selective Catalytic Reduction) systems. DME is an attractive source of hydrogen because it can be stored easily and is a good transportation fuel. Hydrogen and CO enriched gas as a reductant was used with the LNT catalyst in order to reduce NOx emissions. The steam reforming catalyst of DME was used to formation of hydrogen. It has been reported that Cu-based catalysts have high selectivity and activity in the steam reforming of DME. This research used 600 cPsi cordierite as a catalyst, which was coated with copper. The catalysts were made via a sol–gel and impregnation methods. The formation of H2 and CO under the prepared catalysts was tested by a model gas. Experimental parameters were considered; the space velocity (SV) and concentrations of H2O, O2, and CO2 were evaluated. The Cu 30%/γ-Al2O3 catalyst from the sol–gel method exhibited high and stable activity in the production of hydrogen from the steam reforming of DME. Both DME conversion and the selectivity of hydrogen were affected by SV and the concentrations of H2O, O2, and CO2.  相似文献   

16.
Ternary physical mixtures comprised a Fischer-Tropsch catalyst, a methanol synthesis catalyst and a zeolite employed in the hydrocarbon synthesis from syngas. Two Fe-based catalysts (i.e., one promoted by K and the other by Ru), two HY zeolites with different acidities, a commercial HZSM-5 and Cu/ZnO/Al2O3 (methanol synthesis catalyst) were used in these systems. The main products obtained were dimethyl ether, methanol and hydrocarbons. First of all, it was observed that by adding Cu/ZnO/Al2O3 catalyst to a binary physical mixture comprised of a Fischer-Tropsch catalyst and HZSM-5, the CO conversion increases more than 20 times. Second, during the reaction transient period the dimethyl ether selectivity decreases as the conversion increases. Third, the hydrocarbons synthesized followed the ASF distribution in the C1-C12 range and finally, it was also verified that the Y zeolites and the Fischer-Tropsch synthesis catalyst promoted by Ru generated the most active physical mixtures. The results showed that the role of zeolites in the ternary physical mixture is only associated with the dimethyl ether synthesis. The following reaction pathway was suggested: first, methanol is synthesized from syngas using Cu/ZnO/Al2O3 catalyst; after that, this alcohol is dehydrated by an acid catalyst generating DME; and lastly, DME initiates Fischer-Tropsch synthesis, which is then propagated by CO.  相似文献   

17.
Partial oxidation and dry reforming of methane to synthesis gas over Ca/Ni/K(Na) catalysts have been studied. Effects of temperature, pressure, and oxygen/methane ratios on catalytic activity, selectivity, and carbon formation have been determined. Also reforming of 13CH4 in the presence of CO2 and Temperature-Programmed Oxidation (TPO) of deposited carbon after the reaction indicated that both methane and CO2 contribute to carbon formation. The TPO of deposited carbon on Ca/Ni/K catalyst showed that the catalyst consumed a significant amount of oxygen, only a fraction of which was consumed by carbon species on the surface, indicating that the surface oxygen plays a significant role in oxidizing and removing carbon species from the catalyst surfaces  相似文献   

18.
With naphthalene as biomass tar model compound, partial oxidation reforming (with addition of O2) and dry reforming of biomass fuel gas were investigated over nickel-based monoliths at the same conditions. The results showed that both processes had excellent performance in upgrading biomass raw fuel gas. Above 99% of naphthalene was converted into synthesis gases (H2+CO). About 2.8 wt% of coke deposition was detected on the catalyst surface for dry reforming process at 750 °C during 108 h lifetime test. However, no coke deposition was detected for partial oxidation reforming process, which indicated that addition of O2 can effectively prohibit the coke formation. O2 can also increase the CH4 conversion and H2/CO ratio of the producer gas. The average conversion of CH4 in dry and partial oxidation reforming process was 92% and 95%, respectively. The average H2/CO ratio increased from 0.95 to 1.1 with the addition of O2, which was suitable to be used as synthesis gas for dimethyl ether (DME) synthesis.  相似文献   

19.
The influence of the addition of 1, 2 or 5 vol.% of CO, H2 or CO2 to the feed during the partial oxidation of methane (POM) was studied over a Rh/Ti–SiO2 catalyst. The addition of H2 or CO decreases the conversion and syngas selectivity. This decrease of performance seems to be related to a higher reduction of the catalyst due to the co-feeding of H2 or CO. The addition of CO2 also appears unfavourable to the production of hydrogen but increases the CO yield. A combination of the dry reforming and the reverse water–gas shift reactions is suggested to explain the observed modifications in the product yields.  相似文献   

20.
CO2 reforming, oxidative conversion and simultaneous oxidative conversion and CO2 or steam reforming of methane to syngas (CO and H2) over NiO–CoO–MgO (Co: Ni: Mg=0·5: 0·5:1·0) solid solution at 700–850°C and high space velocity (5·1×105 cm3 g−1 h−1 for oxidative conversion and 4·5×104 cm3 g−1 h−1 for oxy-steam or oxy-CO2 reforming) for different CH4/O2 (1·8–8·0) and CH4/CO2 or H2O (1·5–8·4) ratios have been thoroughly investigated. Because of the replacement of 50 mol% of the NiO by CoO in NiO–MgO (Ni/Mg=1·0), the performance of the catalyst in the methane to syngas conversion process is improved; the carbon formation on the catalyst is drastically reduced. The CoO–NiO–MgO catalyst shows high methane conversion activity (methane conversion >80%) and high selectivity for both CO and H2 in the oxy-CO2 reforming and oxy-steam reforming processes at ⩾800°C. The oxy-steam or CO2 reforming process involves the coupling of the exothermic oxidative conversion and endothermic CO2 or steam reforming reactions, making these processes highly energy efficient and also safe to operate. These processes can be made thermoneutral or mildly exothermic or mildly endothermic by manipulating the process conditions (viz. temperature and/or CH4/O2 ratio in the feed). © 1998 Society of Chemistry Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号