首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
气-固环流反应器内瞬态流体力学特性的数值模拟   总被引:4,自引:2,他引:2  
采用双流体模型和颗粒动力学理论,并考虑颗粒团聚现象对气固相间曳力的影响,对气-固环流反应器内的流体力学特性进行了数值模拟。模拟的时均固含率和颗粒速度与实验数据具有较好一致性,验证了模拟方法的可靠性。模拟结果表明:气-固环流反应器内瞬态固含率的分布具有典型聚式流态化的非均匀特征;压力脉动沿床层轴向的分布在一定程度上定性反映了气泡运动的信息;颗粒速度的时间序列和概率密度分布函数表明,床层各径向位置均存在颗粒的向上、向下运动,颗粒主体在床层内向上运动的同时还存在微观的内循环运动,模拟值为颗粒时均速度的径向非均一性宏观分布提供了合理的微观解释。  相似文献   

2.
Hydrodynamics in a conical fluidized bed were studied using electrical capacitance tomography (ECT) for a bimodal and mono-disperse particle size distribution (PSD) of dry pharmaceutical granule. The bimodal PSD exhibited a continuous distribution with modes at 168 and 1288 μm and contained approximately 46% Geldart A, 32% Geldart B and 22% Geldart D particles by mass. The mono-disperse PSD had a mean particle size of 237 μm and contained approximately 71% Geldart A, 27% Geldart B, and 2% Geldart C particles by mass. The granule particle density was 830 kg/m3. Experiments were conducted at a static bed height of 0.16 m for gas superficial velocities ranging from 0.25 to 2.50 m/s for the mono-disperse PSD, and from 0.50 to 3.00 m/s for the bimodal PSD. These gas velocities covered both the bubbling and turbulent fluidization regimes. An ‘M’-shaped time-averaged radial voidage profile appeared upon transition from bubbling to turbulent fluidization. The ‘M’-shaped voidage profile was characterized by a dense region near the wall of the fluidized bed with decreasing solids concentration towards the centre. An increased solids concentration was observed in the middle of the bed. Frame-by-frame analysis of the images showed two predominant bubble types: spherical bubbles with particle penetration in the nose which created a core of particles that extended into, but not through, the bubble; and spherical bubbles. Penetrated bubbles, responsible for the ‘M’ profile, were a precursor to bubble splitting; which became increasingly prevalent in the turbulent regime.  相似文献   

3.
This work compares simulation and experimental results of the hydrodynamics of a two-dimensional, bubbling air-fluidized bed. The simulation in this study has been conducted using an Eulerian–Eulerian two-fluid approach based on two different and well-known closure models for the gas–particle interaction: the drag models due to Gidaspow and Syamlal & O'Brien. The experimental results have been obtained by means of Digital Image Analysis (DIA) and Particle Image Velocimetry (PIV) techniques applied on a real bubbling fluidized bed of 0.005 m thickness to ensure its two-dimensional behaviour. Several results have been obtained in this work from both simulation and experiments and mutually compared. Previous studies in literature devoted to the comparison between two-fluid models and experiments are usually focused on bubble behaviour (i.e. bubble velocity and diameter) and dense-phase distribution. However, the present work examines and compares not only the bubble hydrodynamics and dense-phase probability within the bed, but also the time-averaged vertical and horizontal component of the dense-phase velocity, the air throughflow and the instantaneous interaction between bubbles and dense-phase. Besides, quantitative comparison of the time-averaged dense-phase probability as well as the velocity profiles at various distances from the distributor has been undertaken in this study by means of the definition of a discrepancy factor, which accounts for the quadratic difference between simulation and experiments The resulting comparison shows and acceptable resemblance between simulation and experiments for dense-phase probability, and good agreement for bubble diameter and velocity in two-dimensional beds, which is in harmony with other previous studies. However, regarding the time-averaged velocity of the dense-phase, the present study clearly reveals that simulation and experiments only agree qualitatively in the two-dimensional bed tested, the vertical component of the simulated dense-phase velocity being nearly an order of magnitude larger than the one obtained from the PIV experiments. This discrepancy increases with the height above the distributor of the two-dimensional bed, and it is even larger for the horizontal component of the time-averaged dense-phase velocity. In other words, the results presented in this work indicate that the fine agreement commonly encountered between simulated and real beds on bubble hydrodynamics is not a sufficient condition to ensure that the dense-phase velocity obtained with two-fluid models is similar to that from experimental measurements on two-dimensional beds.  相似文献   

4.
运用考虑颗粒自旋转流动对颗粒碰撞能量交换和耗散影响的颗粒动理学方法,建立鼓泡流化床气固两相Euler-Euler双流体模型,数值模拟流化床内气体颗粒两相流动特性。分析表明,颗粒平动温度与旋转温度之比是法向和切向颗粒弹性恢复系数和摩擦系数的函数。与不考虑颗粒旋转效应计算结果相比,考虑颗粒旋转效应后床内较容易形成气泡,颗粒自旋转运动将导致床内非均匀结构更明显。并且床层平均空隙率和床层膨胀高度增加,床中心区域颗粒轴向速度提高,床内颗粒平动温度下降。考虑颗粒旋转效应后预测的颗粒轴向速度和颗粒脉动速度与文献实验结果基本吻合。考虑颗粒旋转效应后获得的气泡直径更接近于前人经验关联式。  相似文献   

5.
网格尺度、时间步长和颗粒堆积率对射流床CFD模拟的影响   总被引:3,自引:0,他引:3  
采用欧拉-欧拉双流体模型,在CFX4.4软件上增加用户自定义子程序模拟了高2.0 m、宽0.3 m的二维射流床内空气和玻璃珠体系的流体动力学特性. 考察了网格尺度、最大颗粒堆积率和时间步长对射流的形成及发展过程、射流穿透深度及射流频率的影响,并与实验数据进行了对比. 结果表明,对于本研究的气固体系,当床层下部纵向网格数为100、时间步长0.0005 s时,不仅可以满足网格尺度和时间步长的无关性要求,而且模拟的射流穿透深度和射流频率与实验测量值的误差分别为5.7%和3.8%. 最大颗粒堆积率在本研究范围对模拟结果的影响可以忽略.  相似文献   

6.
A computational study was carried out on bubble dynamic behaviors and bubble size distributions in a pressurized lab-scale gas-solid fluidized bed of Geldart A particles. High-resolution 3-D numerical simulations were performed using the two-fluid model based on the kinetic theory of granular flow. A fine-grid, which is in the range of 3–4 particle diameters, was utilized in order to capture bubble structures explicitly without breaking down the continuum assumption for the solid phase. A novel bubble tracking scheme was developed in combination with a 3-D detection and tracking algorithm (MS3DATA) and applied to detect the bubble statistics, such as bubble size, location in each time frame and relative position between two adjacent time frames, from numerical simulations. The spatial coordinates and corresponding void fraction data were sampled at 100 Hz for data analyzing. The bubble coalescence/break-up frequencies and the daughter bubble size distribution were evaluated by using the new bubble tracking algorithm. The results showed that the bubble size distributed non-uniformly over cross-sections in the bed. The equilibrium bubble diameter due to bubble break-up and coalescence dynamics can be obtained, and the bubble rise velocity follows Davidson’s correlation closely. Good agreements were obtained between the computed results and that predicted by using the bubble break-up model proposed in our previous work. The computational bubble tracking method showed the potential of analyzing bubble motions and the coalescence and break-up characteristics based on time series data sets of void fraction maps obtained numerically and experimentally.  相似文献   

7.
Bubbling fluidized beds are often used to achieve a uniform particle temperature distribution in industrial processes involving gas and particles. However, the chaotic bubble dynamics pose significant challenges in scale-up. Recent work (Guo et al., 2021, PNAS 118, e2108647118) has shown that using vibration can structure the bubbling pattern to a highly predictable manner with the characteristic bubble properties independent of system width, opening opportunities to address key issues associated with conventional bubbling fluidized beds. Herein, using two-fluid modeling simulations, we studied heat transfer characteristics within the dynamically structured bubbling fluidized bed and compared to unstructured bubbling fluidized beds and packed beds. Simulations show that the structured bubbling fluidized bed can achieve the most uniform particle temperature distribution because it can achieve the best particle mixing while maintaining a global heat transfer coefficient similar to that of a freely bubbling fluidized bed.  相似文献   

8.
在传统气固流化床中引入搅拌桨,可减轻聚合物颗粒的黏附并强化流态化过程。采用计算流体力学(CFD)方法对搅拌流化床内的压力脉动特性进行数值模拟,考察流态化过程中的气泡行为。模拟过程采用多重参考坐标系方法解决搅拌桨区域的运动问题,由欧拉双流体模型和颗粒动力学方法模拟气固两相流。床层压力脉动的统计分析和功率谱分析表明,随着搅拌桨转速的增加,流化床内的压力脉动标准偏差和功率谱幅值变小,床层内的平均气泡尺寸减小,床层可由鼓泡流态化向散式流态化转变。  相似文献   

9.
In the present study, local flow properties are investigated in pilot plant scale fluidized bed reactors using both fibre optic and capacitances probes. Measurements are conducted at ambient as well as at 150°C. The system used is air and spent FCC particles (mean particle diameter: 65pm). The static bed height is 1.6 m. Bubbling and turbulent regimes (V = 0.40 and 0.70 m/s) are investigated in two 0.3 and 0.5 m ID columns.

Bubble fraction under the bubbling regime and at room temperature, measured using fibre optic and capacitance probes, are in good agreement. However, in the turbulent regime, fibre optic probes are prone to underestimate the bubble fraction while capacitance sensors tend to overestimate it. These discrepancies between fibre optic and capacitance measurements increase with temperature.

Using capacitance probes, a prevalent flat bubble rise velocity profile is measured. This is assigned to the relatively slow response, to the size and to the geometry of the capacitance probes. Overall this gives an underestimation of the bubble frequency and an overestimation of the bubble contact time and the bubble contact length.

Due to the high fibre optic probe sensitivity, care should be taken in the interpretation of signals. Overestimation of bubble frequency leads to underestimation of both bubble contact times and bubble contact lengths.  相似文献   

10.
This work compares numerical simulations of fluid dynamics in fluidized beds using different closure models and air feed system models. The numerical results are compared to experiments by means of power spectral density distributions of fluctuating pressure signals and bubble statistics obtained from capacitance probe measurements. Two different particle rheology models are tested in combination with two different values of the maximum particle volume fraction. The first particle model predicts the particle pressure by an exponential power law and assumes a constant particle viscosity (CPV), and the second model predicts the stresses using the kinetic theory of granular flow (KTGF). Furthermore, two model approaches for the air inflow are evaluated. The first inflow model includes the coupling between the air-feed system and the fluidized bed in the simulation, and the second model assumes a constant mass flow of gas into the fluidized bed. Finally, the influence of the compressibility of the gas phase on the numerical predictions is investigated. The numerical simulations are made using the CFX-4.4 commercial flow solver.The simulations show that the KTGF model gives a more evenly distributed bubble flow profile over the bed cross-section, while the CPV model gives a more parabolic bubble flow profile, with a higher bubble flow in the central part of the bed. This work shows that the KTGF model results are in significantly better agreement with the experiments. It is furthermore shown that the modelling of the air-feed system is crucial to for predicting the overall bed dynamic behaviour.  相似文献   

11.
Based on the experimental observation of the fluidization characteristics of solid mixtures (resin and rapeseed) with different densities and sizes, the jet behaviours of the binary system are simulated in a two-dimensional jetting fluidized bed 0.30 m in width and 2.00 m in height. A simple mathematical model, by introducing two additional force terms in both gas and particle phase momentum equations of Gidaspow’s inviscid two-fluid model, is used to explore the effects of jet gas velocity and mixture combination on the jet penetration depth in the fluidized bed with a binary system. Experimental results show that there is a fluidization velocity interval (uif-uff) for the resin-on-rapeseed (flotsam-on-jetsam) segregated bed. The simulated jet penetration depth increases with the increase of jet gas velocity and the volume fraction of the flotsam (resin), which is in fair agreement with experimental data. The above findings show that the hydrodynamic model of Brandani and Zhang (2006), by introducing the average physical properties from Goossens et al.(1971), can be used to predict the jet behaviors of a well-mixing binary system.  相似文献   

12.
The hydrodynamics of fluidized beds strongly influence their operation, but are complicated and chaotic. There are many measurement techniques, but none fully characterizes gas-solid fluidized beds. Acoustic signals from fluidized beds cover a wide frequency spectrum and can be correlated to bed characteristics. Experiments were conducted to study the acoustic signals from ultrasonic transducers mounted on the outer wall of a two-dimensional fluidization column. The acoustic signals were related to bubble behavior in 550 μm glass beads. Simultaneous acoustic and pressure measurements allowed direct comparison of these signals for single bubbles, pairs and chains of bubbles. The envelope of acoustic signals, generated by particle collisions and particle-wall impacts, provided information on the behavior of bubbles. Significant peaks appeared as the top portions of the bubble wakes approached the acoustic sensor. Pressure waves propagated considerably in the horizontal direction, whereas acoustic signals propagated little in the lateral direction, but transmitted forward in the wall in the direction of bubble motion, maintaining the wave profile invariant during transmission. The strong lateral localization of acoustic signals is promising for determining the lateral bubble position in the bed. Acoustic signals provide a potential means of determining such bubble properties as velocity, frequency and volume, with some advantages relative to pressure signals.  相似文献   

13.
This paper discusses the simulation of bubbling gas-solid flows by using the Eulerian two-fluid approach. Predictions of particle motion, bed expansion, bubble size and bubble velocity in bubbling beds containing Geldart B particles are compared with experimental results and correlations found in the literature. In addition, gas mixing in a bed of Geldart A particles is investigated.An in-house code has been developed based on the finite-volume method and the time-splitting approach using a staggered grid arrangement. The velocities in both phases are obtained by solving the 2D Reynolds-averaged Navier/Stokes equations using a partial elimination algorithm (PEA) and a coupled solver. The k-ε turbulence model is used to describe the turbulent quantities in the continuous phase.In general, the model predictions are in good agreement with experimental data found in the literature. Most important observations are: the level of the restitution coefficient was found to be crucial in order to obtain successful results from 2D axisymmetric simulations of a system containing Geldart B particles. Bubble size and bubble rise velocities are not as sensitive to the restitution coefficient. The turbulence model is of outmost importance concerning gas mixing in a fluidized bed of Geldart A particles.From these numerical analyzes an optimized granular flow two-fluid model can be designed for the purpose of simulating reactive systems in fluidized bed reactors.  相似文献   

14.
A numerical study was conducted based on the gas-solid two-fluid model using the body-fitted coordinate system to analyze the behavior of particles and bubbles flow in bubbling fluidized beds without and with immersed tubes. The kinetic theory of granular flow was implemented in the model. The images of simulated instantaneous particle concentration and velocity gave the process of the formation, coalescence and eruption of bubbles. The effects of the tube pitch and superficial gas velocity on the fluidization in a bubbling fluidized bed were investigated. Calculated bubble frequencies without and with immersed tubes were in agreement with previous experimental and simulation findings. The wavelet multi-resolution analysis was used to analyze the simulated data of instantaneous particle concentration. From the random-like particle concentration fluctuations, the fluctuating components due to particle flow and bubble motion can be extracted based on the wavelet multi-resolution analysis over a time-frequency plane.  相似文献   

15.
The time series of fluid catalytic cracking (FCC) particle concentrations were measured by an optical fiber probe under conditions of different sound pressure levels and sound frequencies in an acoustic bubbling fluidized bed (? 140 mm × 1600 mm). The results show that the minimum fluidization velocity had a minimum value when the sound wave frequency was 150 Hz. Under the same sound frequency, the fluidization velocity decreased as the sound pressure level increased. The particle concentration signals in an acoustic fluidized bed were also analyzed by means of wavelet analysis. On the basis of discrete wavelet transform, an original signal was resolved into five detailed scale signals. By using wavelet energy analysis, it was found that the peak frequency of the scale 3 or 4 detail wavelet signals represents the bubbling frequency and the peak amplitude for the bubble size. The results indicate that the bubbling frequency and bubble size decreased with increasing sound pressure level at a given frequency. In addition they decreased with increasing sound frequency ranging from 50–150 Hz, but further increased with increasing sound frequency ranging from 150–500 Hz.  相似文献   

16.
The effect of an air distributor on the fluidization characteristics of 1 mm glass beads has been determined in a conical gas fluidized bed (0.1 m-inlet diameter and 0.6 m in height) with an apex angle of 20‡. To determine the effect of distributor geometry, five different perforated distributors were employed (the opening fraction of 0.009–0.037, different hole size, and number). The differential bed pressure drop increases with increasing gas velocity, and it goes from zero to a maximum value with increasing or decreasing gas velocity. From the differential bed pressure drop profiles with the distributors having different opening fractions, demarcation velocities of the minimum and maximum velocities of the partial fluidization, full fluidization, partial defluidization and the full defluidization are determined. Also, bubble frequencies in the conical gas fluidized beds were measured by an optical probe. In the conical bed, the gas velocity at which the maximum bed pressure drop attained increases with increasing the opening fraction of distributors.  相似文献   

17.
研究了稻草及不同温度热解半焦颗粒在内径100 mm、高1000 mm的有机玻璃流化床中的流化特性. 结果表明,稻草颗粒无法单独流化,而其热解半焦颗粒可单独流化;半焦颗粒的最小流化速度随粒径增大而增大,与床层高度无关,筛分粒径为0.45~0.9, 0.18~0.45, 0.125~0.18 mm的半焦颗粒的最小流化速度分别为0.19, 0.16, 0.14 m/s;300~550℃温度范围内稻草热解半焦颗粒的流化特性无明显区别;半焦与稻草颗粒混合流化时,稻草颗粒不大于20%(w)时床层有较好的流化质量,混合颗粒的最小流化速度都随混合颗粒中稻草含量增大而增大.  相似文献   

18.
This investigation was performed to study the underlying structure characteristics of acoustic emission (AE) signals, which could be helpful not only to understand a relatively complete picture of hydrodynamics in multiphase flow systems, but also to extract the most useful information from the original signals with respect to a particular measurement requirement. However, due to AE signals are made up of emission from many acoustic sources at different scales, the resolution of AE signals is often very complicated and appears to be relatively poorly researched. In this study, the structure characteristics of AE signals measured both in gas–solid fluidized bed and liquid–solid stirred tank were researched in detail by resorting to wavelet transform and rescaled range analysis. A general criterion was proposed to resolve AE signals into three physical‐related characteristic scales, i.e., microscale, mesoscale, and macroscale. Multiscale resolution of AE signals implied that AE signals in microscale represented totally the dynamics of solid phase and could be applied to measure particle‐related properties. Furthermore, based on the structure characteristics of AE signals, useful features related to particles motion were extracted to establish two new prediction models, one for on‐line measurements of particle size distribution (PSD) and average particle size in gas–solid fluidized bed and the other for on‐line measurement of the suspension height in liquid–solid stirred tank. The prediction results indicated that (1) measurements of PSD and average particle size using AE method showed a fairly good agreement with that using sieve method both for laboratory scale and plant scale fluidized beds, and (2) measurements of the suspension height using AE method showed a fairly good agreement with that using visual method. The results thus validated that the extracted features based on analyses of structure characteristics of AE signals were very useful for establishing effective on‐line measurement models with respect to some particular applications. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

19.
Particle and bubble motion plays an important role in determining the hydrodynamic characteristics of a fluidized system. The dynamic parameters of a fluidized bed are reflection of the complex correlation between particle–particle and particle–bubble in a system. A two-dimensional Eulerian–Eulerian model integrating the kinetic theory of granular flow is used to simulate the bubble and linear low density polyethylene (LLDPE) particle dynamic behavior in a gas–solid fluidized bed. The simulated method is validated by pressure fluctuation experiment. The computed vertical turbulent energy spectrum of particles is applied to identify the particle motion intensity and the inhomogeneity of turbulent energy dissipation. The energy spectrum captures the Levy–Kolmogorov law in inertial range at high frequency. Furthermore, the flatness factors of wavelet decomposition coefficients of particle fluctuation velocity are for the first time introduced to analyze the intermittence caused by coherent structures in the flow field. The results show that the intermittence in dissipation range is much stronger than that in energy-containing and inertial range, and reinforces rapidly as the radial distance and the bed height increase. Moreover, the acoustic emission (AE) energy is found to be able to indicate the flow regimes. By combing granular temperature and AE energy, the relationship between the spatial distribution of granular temperature and the flow regimes is established. To get more detail of bubble motion behavior, the power spectrum of voidage fluctuation is analyzed. This work provides valuable insights into the dynamic characteristics and the flow field information of a gas–solid fluidized bed by CFD simulation.  相似文献   

20.
本文采用床层压力脉动测试技术,通过凝聚函数法进行分析,对流化床气泡上升过程的变化规律进行了研究。表明气-固流化床浓相段沿床高可划分为三个区域,即初始气泡生成聚并区,气泡相对稳定区和气泡崩破区。并对操作条件,颗粒物性及床层结构因素,对于划分区域的影响进行了探索  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号