首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The ubiquitin pathway is a major system for selective proteolysis in eukaryotes. However, the mechanisms underlying substrate selectivity by the ubiquitin system remain unclear. We previously identified isoforms of a rat ubiquitin-conjugating enzyme (E2) homologous to the Saccharomyces cerevisiae class I E2 genes, UBC4/UBC5. Two isoforms, although 93% identical, show distinct features. UBC4-1 is expressed ubiquitously, whereas UBC4-testis is expressed in spermatids. Interestingly, although these isoforms interacted similarly with some ubiquitin-protein ligases (E3s) such as E6-AP and rat p100 and an E3 that conjugates ubiquitin to histone H2A, they also supported conjugation of ubiquitin to distinct subsets of testis proteins. UBC4-1 showed an 11-fold greater ability to support conjugation of ubiquitin to endogenous substrates present in a testis nuclear fraction. Site-directed mutagenesis of the UBC4-testis isoform was undertaken to identify regions of the molecule responsible for the observed difference in substrate specificity. Four residues (Gln-15, Ala-49, Ser-107, and Gln-125) scattered on surfaces away from the active site appeared necessary and sufficient for UBC4-1-like conjugation. These four residues identify a large surface of the E2 core domain that may represent an area of binding to E3s or substrates. These findings demonstrate that a limited number of amino acid substitutions in E2s can dictate conjugation of ubiquitin to different proteins and indicate a mechanism by which small E2 molecules can encode a wide range of substrate specificities.  相似文献   

2.
The ubiquitin-like protein SMT3 from Saccharomyces cerevisiae and SUMO-1, its mammalian homolog, can be covalently attached to other proteins posttranslationally. Conjugation of ubiquitin requires the activities of ubiquitin-activating (E1) and -conjugating (E2) enzymes and proceeds via thioester-linked enzyme-ubiquitin intermediates. Herein we show that UBC9, one of the 13 different E2 enzymes from yeast, is required for SMT3 conjugation in vivo. Moreover, recombinant yeast and mammalian UBC9 enzymes were found to form thioester complexes with SMT3 and SUMO-1, respectively. This suggests that UBC9 functions as an E2 in a SMT3/SUMO-1 conjugation pathway analogous to ubiquitin-conjugating enzymes. The role of yeast UBC9 in cell cycle progression may thus be mediated through its SMT3 conjugation activity.  相似文献   

3.
4.
A putative ubiquitin protein ligase (E3-CaM) which cooperates with UBC4 in selectively ubiquitinating calmodulin has been partially purified from Saccharomyces cerevisiae. Ca2+ was required for this activity and monoubiquitinated calmodulin was the main product of the reaction. The apparent Km of E3-CaM for calmodulin was approximately 1 microM which is of the same order of magnitude as the concentration of calmodulin in yeast cells. Proteins which are good substrates for other E3s (E3 alpha or E3-R) were not ubiquitinated by E3-CaM. Lower but significant activities of E3-CaM were observed when UBC1 replaced UBC4.  相似文献   

5.
6.
7.
8.
9.
The Na+,K(+)-ATPase alpha subunit has three known isoforms, alpha 1, alpha 2 and alpha 3, each encoded by a separate gene. This study was undertaken to determine the functional status of a fourth human alpha-like gene, ATP1AL2. Partial genomic sequence analysis revealed regions exhibiting sequence similarity with exons 3-6 of the Na+,K(+)-ATPase alpha isoform genes. ATP1AL2 cDNAs spanning the coding sequence of a novel P-type ATPase alpha subunit were isolated from a rat testis library. The predicted polypeptide is 1028 amino acids long and exhibits 76-78% identity with the rat Na+,K(+)-ATPase alpha 1, alpha 2 and alpha 3 isoforms, indicating that ATP1AL2 may encode a fourth Na+,K(+)-ATPase alpha isoform. A 3.9-kb mRNA is expressed abundantly in human and rat testis.  相似文献   

10.
Ubiquitin conjugating enzymes (UBCs) are a family of proteins directly involved in ubiquitination of proteins. Ubiquitination is known to be involved in control of a variety of cellular processes, including cell proliferation, through the targeting of key regulatory proteins for degradation. The ubc9 gene of the yeast Saccharomyces cerevisiae (Scubc9) is an essential gene which is required for cell cycle progression and is involved in the degradation of S phase and M phase cyclins. We have identified a human homolog of Scubc9 (termed hubc9) using the two hybrid screen for proteins that interact with the human papillomavirus type 16 E1 replication protein. The hubc9 encoded protein shares a very high degree of amino acid sequence similarity with ScUBC9 and with the homologous hus5+ gene product of Schizosaccharomyces pombe. Genetic complementation experiments in a S.cerevisiae ubc9ts mutant reveal that hUBC9 can substitute for the function of ScUBC9 required for cell cycle progression.  相似文献   

11.
Combinations of different ubiquitin-conjugating (Ubc) enzymes and other factors constitute subsidiary pathways of the ubiquitin system, each of which ubiquitinates a specific subset of proteins. There is evidence that certain sequence elements or structural motifs of target proteins are degradation signals which mark them for ubiquitination by a particular branch of the ubiquitin system and for subsequent degradation. Our aim was to devise a way of searching systematically for degradation signals and to determine to which ubiquitin system subpathways they direct the proteins. We have constructed two reporter gene libraries based on the lacZ or URA3 genes which, in Saccharomyces cerevisiae, express fusion proteins with a wide variety of C-terminal extensions. From these, we have isolated clones producing unstable fusion proteins which are stabilized in various ubc mutants. Among these are 10 clones whose products are stabilized in ubc6, ubc7 or ubc6ubc7 double mutants. The C-terminal extensions of these clones, which vary in length from 16 to 50 amino acid residues, are presumed to contain degradation signals channeling proteins for degradation via the UBC6 and/or UBC7 subpathways of the ubiquitin system. Some of these C-terminal tails share similar sequence motifs, and a feature common to almost all of these sequences is a highly hydrophobic region such as is usually located inside globular proteins or inserted into membranes.  相似文献   

12.
Recombinant human FSH (rhFSH) was obtained by expressing the human FSH alpha- and beta-subunit complementary DNAs in the chinese hamster ovary cell line. Isoforms of rhFSH were resolved into specific isoelectric (pI) fractions by chromatofocusing. rhFSH isoforms ranged from pI 3.0-5.5 with a modal value of pI 4.2. Analysis of the biological activity of specific pI isoforms of rhFSH was undertaken using both the rat granulosa cell aromatase (in vitro) bioassay and a RRA. More acidic isoforms (e.g. pI 3.5) showed significantly lower affinity (P < 0.05) for rat testicular FSH receptors than did the less acidic isoforms (e.g. pI 4.8). Consistent with the receptor binding affinity data, the more acidic fractions resulted in significantly less activation (P < 0.05) of rat granulosa cell aromatase activity, as measured by estrogen production, than did the less acidic isoforms. The observed bioactivities and their correlation with the pI values of the rhFSH isoforms are consistent with observations of differing bioactivities seen in both pituitary and urinary FSH isoforms. These results demonstrate that rhFSH, made in the chinese hamster ovary cell line, is both biologically active and has isoform profiles, and presumably carbohydrate structures, that closely resemble those seen in natural hFSH.  相似文献   

13.
Previous studies have shown that Tetrahymena citrate synthase and the Tetrahymena 14-nm filament protein are encoded by a single gene and translated from one species of mRNA, and that they are identical in terms of molecular weight, antigenicity, and some enzymatic properties. In this study, using two-dimensional gel electrophoresis, we demonstrated that the citrate synthase comprised pI 7.7 and 8.0 isoforms, while the 14-nm filament protein comprised three isoforms with isoelectric points of 7.7, 8.0, and 8.4. The amino acid sequences of the NH2-terminal portions of all isoforms were identical and the peptide maps with V8 protease were almost the same. In addition, when the citrate synthase activity of each isoform was measured after separation by non-urea isoelectric focusing without denaturing treatment, the pI 7.7 and/or pI 8.0 isoforms exhibited the citrate synthase activity, but the pI 8.4 isoform only found for the 14-nm filament protein did not possess this activity. These results suggest that the polymorphism of these isoforms is caused by some posttranslational modifications, and that it may have resulted in the different compartmentalization and functions of Tetrahymena citrate synthase and the 14-nm filament protein.  相似文献   

14.
Individual members of the conserved family of ubiquitin conjugating enzymes (E2s) mediate the ubiquitination and turnover of specific substrates of the ubiquitin-dependent degradation pathway. E2 proteins have a highly conserved core domain of approximately 150 amino acids which contains the active-site Cys. Certain E2s have unique terminal extensions, which are thought to contribute to selective E2 function by interacting either with substrates or with trans-acting factors such as ubiquitin-protein ligases (E3s). We used the mammalian ubiquitin conjugating enzyme E2-25K in a biochemical test of this hypothesis. The properties of two truncated derivatives show that the 47-residue tail of E2-25K is necessary for three of the enzyme's characteristic properties: high activity in the synthesis of unanchored K48-linked polyubiquitin chains; resistance of the active-site Cys residue to alkylation; and an unusual discrimination against noncognate (nonmammalian) ubiquitin activating (E1) enzymes. However, the tail is not sufficient to generate these properties, as shown by the characteristics of a chimeric enzyme in which the tail of E2-25K was fused to the core domain of yeast UBC4. These and other results indicate that the specific biochemical function of the tail is strongly dependent upon unique features of the E2-25K core domain. Thus, divergent regions within the conserved core domains of E2 proteins may be highly significant for function. Expression of truncated E2-25K as a glutathione S-transferase (GST) fusion protein resulted in the apparent recovery of E2-25K-specific properties, including activity in chain synthesis. However, the catalytic mechanism utilized by the truncated fusion protein proved to be distinct from the mechanism utilized by the wild-type enzyme. The unexpected properties of the fusion protein were due to GST-induced dimerization. These results indicate the potential for self-association to modulate the polyubiquitin chain synthesis activities of E2 proteins, and indicate that caution should be applied in interpreting the activities of GST fusion proteins.  相似文献   

15.
Type 1 protein phosphatases (PP1) are involved in diverse cellular activities, ranging from glycogen metabolism to chromatin structure modification, mitosis, and meiosis. The holoenzymes are composed of two or more subunits, including a catalytic subunit (PP1c) and one or more regulatory subunits. Many eukaryotes possess several catalytic subunit genes which encode highly conserved isoforms. In rodents, one of these isoforms, PP1cgamma2, appears to be expressed predominantly in testes. Whether PP1cgamma2 performs a testis-specific function is unclear. To address this and other questions, the PP1cgamma gene was disrupted by targeted insertion in murine embryonic stem cells. Mice derived from these cells were viable, and homozygous females were fertile. However, males homozygous for the targeted insertion were infertile. Histological examination revealed severe impairment of spermiogenesis beginning at the round spermatid stage. In addition, defects in meiosis were inferred from the presence of polyploid spermatids. Immunohistochemistry revealed the presence of PP1calpha protein on condensing spermatids in both wild-type and mutant testes, suggesting that this closely related isoform is unable to compensate for the loss of PP1cgamma. These defects are discussed in the light of known functions of protein phosphatase 1.  相似文献   

16.
A synthetic peptide corresponding to a region encoded by tau gene exon 8 was used to raise an antibody. The antibody, E8, was used to probe normal tau from different species and abnormal tau proteins from subjects with Alzheimer's disease. Immunoblotting and enzyme-linked immunosorbent assays demonstrated that only bovine tau reacted with the E8 antibody. The E8 immunoreactive tau isoform was estimated to represent less than 2% of the bovine tau. Our results indicate that bovine tau is unique in containing isoforms positive with E8, and that PHF formation does not require the presence of PHF-tau with exon 8.  相似文献   

17.
18.
By catalyzing the rate-limiting step in adipose tissue lipolysis, hormone-sensitive lipase (HSL) is an important regulator of energy homeostasis. The role and importance of HSL in tissues other than adipose are poorly understood. We report here the cloning and expression of a testicular isoform, designated HSLtes. Due to an addition of amino acids at the NH2-termini, rat and human HSLtes consist of 1068 and 1076 amino acids, respectively, compared to the 768 and 775 amino acids, respectively, of the adipocyte isoform (HSLadi). A novel exon of 1.2 kb, encoding the human testis-specific amino acids, was isolated and mapped to the HSL gene, 16 kb upstream of the exons encoding HSLadi. The transcribed mRNA of 3.9 kb was specifically expressed in testis. No significant similarity with other known proteins was found for the testis-specific sequence. The amino acid composition differs from the HSLadi sequence, with a notable hydrophilic character and a high content of prolines and glutamines. COS cells, transfected by the 3.9-kb human testis cDNA, expressed a protein of the expected molecular mass (M(r) approximately 120,000) that exhibited catalytic activity similar to that of HSLadi. Immunocytochemistry localized HSL to elongating spermatids and spermatozoa; HSL was not detected in interstitial cells.  相似文献   

19.
RSP29, a protein secreted by rat round spermatids, stimulates the secretory function of Sertoli cells in the testis. By making use of the N-terminal sequence homology of RSP29 and a human protein hDP1 that we had previously isolated, we cloned the full length cDNA sequence that encodes RSP29. The entire amino acid sequence of RSP29 showed significant homology with that of hDP1, which was later identified as glyoxalase II. Southern analysis showed that the RSP29 protein sequence is highly conserved in eukaryotes and possibly in prokaryotes. The RSP29 mRNA is expressed in many tissues but has an extremely high abundance in testis. These data suggest that RSP29 may have an important function in most tissues of enkaryotic organisms. The high expression of RSP29 in testis and its stimulatory effects on Sertoli cells suggest that RSP29 could be especially important in the regulation of spermatogenesis.  相似文献   

20.
The effects of three isoforms derived from recombinant human FSH on ovarian follicle development in vitro were characterized for the first time. The three subfractions comprised discrete pI ranges of 3. 6-4.6 (acid), 4.5-5.0 (mid), and 5.0-5.6 (least acidic). Follicular growth, estradiol secretion, and antral formation were assessed for each fraction of isoforms in a range of concentrations over a 5-day culture period. Least acidic FSH produced, at and above 1.5 ng/ml, a high percentage of follicles growing above the size threshold necessary for antral formation, whereas mid and acid FSH induced similar growth only at higher concentrations (7.5 ng/ml and 50 ng/ml, respectively). Least acidic FSH specifically induced the most rapid growth of follicles during preantral development. Acid FSH at all concentrations stimulated estradiol-17ss secretion later during culture and antral formation in a lower proportion of follicles than did least acidic and mid FSH. It can be concluded 1) that the least acidic isoform induced fastest preantral growth, producing the largest antral follicles at the lowest dose of all three fractions and 2) that the less and mid acidic isoforms had more impact on stimulation of estradiol production and antral formation than the acid isoform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号