首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The UO2–Al2O3 phase equilibrium system was found to contain no new compounds or solid solutions. Uranium dioxide melted at 2878°± 22°C. and Al2O3 melted at 2034°± 16°C. The eutectic temperature was approximately 1930°C. There is an indication that two immiscible liquids formed above the eutectic temperature between 53 and 74 mole % Al2O3.  相似文献   

2.
The effect of SiC concentration on the liquid and solid oxide phases formed during oxidation of ZrB2–SiC composites is investigated. Oxide-scale features called convection cells are formed from liquid and solid oxide reaction products upon oxidation of the ZrB2–SiC composites. These convection cells form in the outermost borosilicate oxide film of the oxide scale formed on the ZrB2–SiC during oxidation at high temperatures (≥1500°C). In this study, three ZrB2–SiC composites with different amounts of SiC were tested at 1550°C for various durations of time to study the effect of the SiC concentration particularly on the formation of the convection cell features. A calculated ternary phase diagram of a ZrO2–SiO2–B2O3 (BSZ) system was used for interpretation of the results. The convection cells formed during oxidation were fewer and less uniformly distributed for composites with a higher SiC concentration. This is because the convection cells are formed from ZrO2 precipitates from a BSZ oxide liquid that forms upon oxidation of the composite at 1550°C. Higher SiC-containing composites will have less dissolved ZrO2 because they have less B2O3, which results in a smaller amount of precipitated ZrO2 and consequently fewer convection cells.  相似文献   

3.
The phase relations of the systems ZrO2–TiO2 and ZrO2–TiO2–SiO2 were investigated. X-ray diffraction techniques served as the principal means of analysis. The binary system ZrO2–TiO2 was found to be one of partial solid solutions with no intermediate compounds. A eutectic point was found to exist at 50 to 55 weight % ZrO2 and 1600°C. A preliminary investigation of the ternary system ZrO2–TiO2–SiO2, although not extensive, resulted in a better understanding of this system, with a fairly accurate location of some of its boundary lines. A eutectic point was located at 2% ZrO2, 10% TiO2, and 88% SiO2 at approximately 1500°C.  相似文献   

4.
Energetics of rare earth, yttrium, and scandium stabilized zirconia and hafnia have been systematically investigated by oxide melt solution calorimetry. The enthalpies of formation with respect to the oxide end members were simultaneously fit to a quadratic function to extract interaction parameters and enthalpies of transition of the oxide end members to the fluorite structure. ZrO2–SmO1.5 and HfO2–SmO1.5 show the most exothermic enthalpies of formation and interaction parameters, whereas ZrO2–ScO1.5 has the least exothermic enthalpy of formation and interaction parameter. This suggests that the ZrO2–ScO1.5 system shows the least short range order among all investigated systems, consistent with its high ionic conductivity. The extrapolated enthalpy of transition of the rare earth oxide end members to the cubic fluorite structure increase to more endothermic values with decreasing cation size. The γ-cubic fluorite phase transition in ZrO2–ScO1.5 was investigated by differential scanning calorimetry (DSC). The phase transition is reversible, occurs at 1000°–1200°C and shows hysteresis (∼100°C). The enthalpy of transition is endothermic on heating and increases from 1.7±0.1 kJ/mol (22 mol% ScO1.5) to 2.9±0.2 kJ/mol (30 mol% ScO1.5).  相似文献   

5.
Phase equilibrium relations in the system PbO–TiO2–ZrO2 were studied by quenching in the range where the PbO content is 50 mole % and more. Isotherms were examined at 1100°, 1200°, and 1300°C and tie lines were determined between the liquid and solid solution in equilibrium. The incongruent melting point of PbZrO3 was 1570°C and the equilibrium between liquid, PbO-type solid, and PbZrO3 is peritectic. Pb(Zr,Ti)O3 solid solutions containing more than 14 mole % PbZrO3 decomposed to liquid, ZrO2, and Pb(Zr,Ti)O3 and the decomposition temperature rises from 1340° to 1570°C with increasing PbZrO3 content. The system PbTiO3–PbZrO3 should not be treated as a binary, but as a section of the ternary system.  相似文献   

6.
Preparation and Properties of Calcium Zirconate   总被引:2,自引:0,他引:2  
The preparation of CaZrO3 by solid-state reactions at 1450° to 2000°C. is described. A very stable material was formed by the reaction of CaCO3 and ZrO2, in equimolar proportions, at a final temperature of 1850°C. Lattice constant values for this material agreed with data reported by previous investigators. The linear coefficient of thermal expansion for CaZrO8 over the temperature range 25° to 1300°C. was found to be 11.5 × 10−6 per °C. Specimens of CaZrO3 were compatible with ZrO2, MgO, Al2O3, and BeO but reacted with SiC and mullite.  相似文献   

7.
A furnace for use in conjunction with the X-ray spectrometer was developed which was capable of heating small powdered specimens in air to temperatures as high as 1850°C. This furnace was also used for the heating and quenching of specimens in air from temperatures as high as 1850°C. An area of two liquids coexisting between 20 and 93 weight % TiO2 above 1765°± 10°C. was found to exist in the system TiO2–SiO2, which is in substantial agreement with the previous work of other investigators. The area of immiscibility in the system TiO2–SiO2 was found to extend well into the system TiO2–ZrO2–SiO2. The two liquids were found to coexist over a major portion of the TiO2 (rutile) primary-phase area with TiO2 (rutile) being the primary crystal beneath both liquids. The temperature of two-liquid formation in the ternary was found to fall about 80°C. with the first additions of ZrO2 up to 3%. With larger amounts of ZrO2 the change in the temperature of the boundary of the two-liquid area was so slight as to be within the limits of error of the temperature measurement. Primary-phase fields for TiO2 (rutile), tetragonal ZrO2, and ZrTiO4 were found to exist in the system TiO2–ZrO2–SiO2. SiO2 as high cristobalite is known to exist in the system TiO2–ZrO2–SiO2.  相似文献   

8.
The phase diagram of the Al2O3–ZrO2–Sm2O3 system was constructed in the temperature range 1250°–2800°C. The phase transformations in the system are completed in eutectic reactions. No ternary compounds or regions of appreciable solid solution were found in the components or binaries in this ternary system. Two new ternary and one new binary eutectics were found. The minimum melting temperature is 1680°C and it corresponds to the ternary eutectic Al2O3+F-ZrO2+SmAlO3. The solidus surface projection, the schematic of the alloy crystallization path, and the vertical sections present the complete phase diagram of the Al2O3–ZrO2–Sm2O3 system.  相似文献   

9.
The system MgO–Al2O3–2CaO·SiO2 comprises a plane through the tetrahedron CaO–MgO–Al2O3–SiO2. A total of 108 compositions were prepared having an alumina content below the line joining 2CaO·Al2O3SiO2 (gehlenite) and MgO·Al2O3 (spinel). Quenching experiments were carried out on 96 of these compositions at temperatures up to 1590°C. Three binary eutectic systems and two ternary eutectic systems are described. Compositions on this plane are of significance in an investigation of the constitution of basic refractory clinkers made from Canadian dolomitic magnesites. They also concern the compositions of certain blast furnace slags.  相似文献   

10.
Equilibrium phase diagrams for the systems NdCl3–CaCl2 and NdCl3–NaCl were determined by differential thermal analysis. A simple eutectic was observed at 59 ± 1 mol% CaCl2 and 600°± 2°C in the NdCl3–CaCl2 system. A compound NaCl.3NdCl3 which melts incongruently at 545°± 5°C to NdCl3 and a liquid containing approximately 47 mol% NaCl, and a eutectic at 68 mol% NaCl and 439°± 2°C were found in the NdCl3–NaCl system. On the basis of agreements between the activities calculated by the Clausius–Clapeyron equation and Temkin's model using the present data for the NdCl3–CaCl2 system and the literature data for the PrCl3–CaCl2 system, the melts in the former system consist of Nd3+, Ca2+, and Cl ions and in the latter system of Pr3+, Ca2+, and Cl ions. The above approach indicates the presence of Na+, Cl, and NdCl2-5 ions in the NaCl-rich melts and Nd3+, Cl, and NdCl4 in the NdCl3-rich melts in the NdCl3–NaCl system. Analogous ions were indicated in the melts of the PrCl3–NaCl system.  相似文献   

11.
During high-temperature oxidation of ZrB2–SiC composites, a multi-layer oxide scale forms with a silica-rich borosilicate liquid as the surface oxide layer. Here, a recently proposed novel mechanism for the high-temperature oxidation of ZrB2–SiC composites is further investigated and verified. This mechanism involves the formation of convection cells in the oxide surface layer during high-temperature oxidation of the composite. The formation of zirconia deposits found in the center of the convection cells is proposed here to be the consequence of liquid transport. The nature and deposition mechanism of the zirconia is reported in detail, using calculated phase equilibrium diagrams and microstructure observations of a ZrB2-15 vol% SiC composite tested at 1550° and 1700°C in ambient air for various times. The calculated phase equilibrium diagrams for the binary ZrO2–B2O3 system as well as the ternary B2O3–SiO2–ZrO2 system at 1500°C are reported here to interpret these results.  相似文献   

12.
Phase relations in the systems alkaline earth oxide-tungsten trioxide and their stability with metallic tungsten were investigated by the quenching technique using sealed capsules. In the system BeO-WO2, no intermediate compounds were formed. Binary mixtures resulted in a eutectic at 1185°C and 37 mole % BeO. In the system MgO-WO3, the 1:1 compound was stable and melted congruently at 1358°C. There are two crystalline modifications of this compound. The well-known wolframite-type form is stable below 1165°C. Two eutectics were found: 1120°C and 28.5 mole % MgO and 1318°C and 55.0 mole % MgO. In the systems CaO-WO3, SrO-WO3, and BaO-WO3, two binary compounds are stable. The 1:1 compounds with the scheelite-type structure melt, respectively, at 1580°, 1535°, and 1475°C, and form eutectics with WO3 at 1135°, 1073°, and 935°C, all with a eutectic composition near 75 mole % WO3. The 3:1 compounds having the distorted (NH,)3FeF6-type structure melt at ∼2250°, 2225°, and 1795°C. The eutectics between these two compounds are at 1490°C and 56.5 mole % CaO, 1410°C and 57.0 mole % SrO, and 1320°C and 58.2 mole % BaO. Phase transformations to an ideal (NH4)3FeF6-type structure in Sr3WO6 and Ba3WO6, were observed at 1100° and 805° C, respectively, by application of both high-temperature X-ray diffraction and DTA. At 1700°C, metallic tungsten exists in equilibrium with liquid, the alkaline earth oxides, W18O49, the 3:1 ternary oxides, and with combinations thereof.  相似文献   

13.
A reexamination of the system CaO·SiO2–ZrO2 has been conducted in order to use this system to obtain ZrO2-toughened wollastonite materials. The results have shown that CaO·SiO2–ZrO2 is a pseudobinary system with an invariant peritectic point at 1467°± 2°C, which is in disagreement with previously reported results.  相似文献   

14.
The isoplethal sections CaAl2O4–MgO and CaAl4O7–MgO of the Al2O3–MgO–CaO ternary system have been experimentally established at 1 bar total pressure and air of normal humidity. The sections obtained provide new data and information that are in disagreement with thermodynamic evaluations and optimizations of the Al2O3–MgO–CaO ternary system published to date. These differences arise mainly from the inclusion, or exclusion, of the binary compound Ca12Al14O33, mayenite, as a stable phase in the reported studies of the system. The presence or absence of this compound within the system has an important impact on the solid state and melting relationships of the whole ternary system. The present study confirms the solid-state compatibility CaAl2O4–MgO and CaAl2O4–MgO–MgAl2O4 up to 1372°± 2°C, the peritectic melting point of the later mentioned subsystem.  相似文献   

15.
The sintering of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler is terminated due to the crystallization of Al4B2O9 in the glass. The densification of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler using pressureless sintering was accomplished by lowering the sintering temperature of the composite. The sintering temperature was lowered by the addition of small amounts of alkali metal oxides to the MgO–B2O3–Al2O3 glass system. The resultant composite has a four-point bending strength of 280 MPa, a coefficient of thermal expansion (RT—200°C) of 4.4 × 10−6 K−1, a dielectric constant of 6.0 at 1 MHz, porosity of approximately 1%, and moisture resistance.  相似文献   

16.
Amorphous CeO2–ZrO2 gels were prepared by coprecipitation in ammonia solutions. The onset of crystallization of the gels, from calcining in air, was 420°C, while 200° to 250°C in the presence of water and organic solvents such as methanol and ethanol. The sintering behaviors of CeO2–ZrO2 powders were sensitive to the crystallizing conditions, since hard agglomerates formed when the precipitated gels were crystallized by normal calcination in air, whereas soft agglomerates formed when they were crystallized in water or organic solvents. CeO2–ZrO2 powders crystallized in methanol and water at 250°C were sintered to full theoretical density at 1150° and 1400°C, respectively, whereas that crystallized by calcination in air at 450°C was sintered to only 95.2% of theoretical density, even at 1500°C.  相似文献   

17.
Phase relations within the "V2O3–FeO" and V2O3–TiO2 oxide systems were determined using the quench technique. Experimental conditions were as follows: partial oxygen pressures of 3.02 × 10−10, 2.99 × 10−9, and 2.31 × 10−8 atm at 1400°, 1500°, and 1600°C, respectively. Analysis techniques that were used to determine the phase relations within the reacted samples included X-ray diffractometry, electron probe microanalysis (energy-dispersive spectroscopy and wavelength-dispersive spectroscopy), and optical microscopy. The solid-solution phases M2O3, M3O5, and higher Magneli phases (M n O2 n −1, where M = V, Ti) were identified in the V2O3–TiO2 system. In the "V2O3–FeO" system, the solid-solution phases M2O3 and M3O4 (where M = V, Ti), as well as liquid, were identified.  相似文献   

18.
Vanadium tetroxide and vanadium pentoxide were prepared and some of their physical properties were measured. A brief survey was then made of some of their binary oxide compounds. Various mixtures of V2O4 or V2O6 and BeO, MgO, CaO, SrO, BaO, Al2O3, SiO2, TiO2, CeO2, ZrO2, Nb2O6, and U3O8 were heated. When compounds were formed, some of their properties were determined. Refractoriness, thermal expansion, and optical properties were considered of special interest. Vanadium pentoxide was found to have a linear thermal expansion of only 0.63 × 10−6 per °C. from 30° to 450°C.  相似文献   

19.
In this work several complementary techniques have been employed to carefully characterize the sintering and crystallization behavior of CaO–Al2O3–ZrO2–SiO2 glass powder compacts after different heat treatments. The research started from a new base glass 33.69 CaO–1.00 Al2O3–7.68 ZrO2–55.43SiO2 (mol%) to which 5 and 10 mol% Al2O3 were added. The glasses with higher amounts of alumina sintered at higher temperatures (953°C [lower amount] vs. 987°C [higher amount]). A combination of the linear shrinkage and viscosity data allowed to easily find the viscosity values corresponding to the beginning and the end of the sintering process. Anorthite and wollastonite crystals formed in the sintered samples, especially at lower temperatures. At higher temperatures, a new crystalline phase containing ZrO2 (2CaO·4SiO2·ZrO2) appeared in all studied specimens.  相似文献   

20.
The melting, eutectic, peritectic, solidus, and liquidus temperatures in the system Zr-O have been measured directly by a simple optical pyrometric technique requiring only a few hundred milligrams of sample. The saturation solubility of oxygen in α-Zr( s ) between 1270° and 1980°C and the lower phase boundary of the ZrO2α phase between 1900° and 2400°C have been measured by an isopiestic equilibration method. The oxygen solubility limit in α-Zr( s ) agrees well with previous low-temperature studies and reaches a maximum solubility of 35°1 at.% O at the eutectic temperature, 2065°°5°C. The maximum melting temperature of α-Zr( ss ) is 2130°°10°C and corresponds to a composition of 25°1 at.% O. Both of these temperatures are approximately 150° higher than previously reported. Liquidus compositions above the eutectic temperature were obtained via mass spectrometry from the kinetic behavior of the liquid solution-ZrO2–x( s ) mixture as it approached equilibrium at 2125°°5°C. The lower phase boundary or solidus of the ZrO2–x phase departs appreciably from ideal stoichiometry above 1900°C and smoothly reaches its most reduced composition, 61 at.% (ZrO1.56), near 2300°C. The solidus is retrograde at higher temperatures. The melting temperature of the stoichiometric dioxide is 2710°°15°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号