共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
针对协同过滤推荐算法中数据极端稀疏所带来的推荐精度低下的问题,文中提出一种基于情景的协同过滤推荐算法。通过引入项目情景相似度的概念,基于项目情景相似度改进了用户之间相似度的计算公式,并将此方法应用至用户离线聚类过程中,最终利用用户聚类矩阵和用户评分数据产生在线推荐。实验结果表明,该算法能够在数据稀疏的情况下定位目标用户的最近邻,一定程度上缓解数据极端稀疏性引起的问题,并减少系统在线推荐的时间。 相似文献
3.
随着信息的海量增长,推荐系统有效缓解了信息爆炸带来的问题,其中协同过滤作为主流技术之一受到了广泛的关注.针对用户的兴趣偏好研究主要是基于商品标签的有监督数据集进行研究,忽略了无监督数据集,同时,在计算用户的兴趣偏好过程中也未能考虑到信任用户对用户兴趣的影响.为此,文中首先在无监督的项目数据集上采用矩阵分解模型得到项目的潜在特征向量,据此对项目进行聚类以表示项目的类别信息;然后,结合用户的信任关系和用户-项目评分矩阵构造用户的兴趣偏好矩阵;最后,为提高推荐效率,在用户的兴趣偏好矩阵上对用户进行聚类,在每个聚类簇内计算用户之间的相似度,从而实现推荐.在公开数据集上的实验结果表明,该算法能有效改善推荐结果的精确性,提升推荐质量. 相似文献
4.
随着信息的海量增长,推荐系统有效缓解了信息爆炸带来的问题,其中协同过滤作为主流技术之一受到了广泛的关注.针对用户的兴趣偏好研究主要是基于商品标签的有监督数据集进行研究,忽略了无监督数据集,同时,在计算用户的兴趣偏好过程中也未能考虑到信任用户对用户兴趣的影响.为此,文中首先在无监督的项目数据集上采用矩阵分解模型得到项目的潜在特征向量,据此对项目进行聚类以表示项目的类别信息;然后,结合用户的信任关系和用户-项目评分矩阵构造用户的兴趣偏好矩阵;最后,为提高推荐效率,在用户的兴趣偏好矩阵上对用户进行聚类,在每个聚类簇内计算用户之间的相似度,从而实现推荐.在公开数据集上的实验结果表明,该算法能有效改善推荐结果的精确性,提升推荐质量. 相似文献
5.
基于项目属性的用户聚类协同过滤推荐算法 总被引:1,自引:0,他引:1
协同过滤推荐算法是个性化推荐服务系统的关键技术,由于项目空间上用户评分数据的极端稀疏性,传统推荐系统中的用户相似度量算法开销较大并且无法保证项目推荐精度.通过对共同感兴趣的项目属性的相似用户进行聚类,构建了不同项目评价的用户相似性,设计了一种优化的协同过滤推荐算法.实验结果表明,该算法能够有效避免由于数据稀疏性带来的弊端,提高了系统的推荐质量. 相似文献
6.
7.
个性化服务中基于用户聚类的协同过滤推荐 总被引:19,自引:0,他引:19
协同过滤技术被成功地应用于个性化推荐系统中,但随着系统规模扩大,它的效能逐渐降低。针对此缺点,使用了基于用户聚类的协同过滤推荐,根据用户评分的相似性对用户聚类,在此基础上搜索目标用户的最近邻居,从而缩小用户的搜索范围。本文还提出将协同过滤推荐分为类内相似系数计算和产生推荐两个阶段,把相似系数的计算放在离线部分,减少在线推荐的计算量,提高实时响应速度。另对聚类算法初始聚类中心的选取也做了改进。 相似文献
8.
传统的协同过滤推荐算法存在数据稀疏性以及推荐准确率低等问题,针对该问题提出一种基于模糊C均值聚类的协同过滤推荐算法GAFCM-CF(genetic algorithm based fuzzy c-means collaborative filtering).首先,该算法结合用户评分和项目特征构建用户特征偏好矩阵,深入挖... 相似文献
9.
10.
针对传统的协同过滤算法忽略了用户兴趣源于关键词以及数据稀疏的问题,提出了结合用户兴趣度聚类的协同过滤推荐算法。利用用户对项目的评分,并从项目属性中提取关键词,提出了一种新的RF-IIF (rating frequency-inverse item frequency)算法,根据目标用户对某关键词的评分频率和该关键词被所有用户的评分频率,得到用户对关键词的偏好,形成用户—关键词偏好矩阵,并在该矩阵基础上进行聚类。然后利用logistic函数得到用户对项目的兴趣度,明确用户爱好,在类簇中寻找目标用户的相似用户,提取邻居爱好的前◢N◣个物品对用户进行推荐。实验结果表明,算法准确率始终优于传统算法,对用户爱好判断较为准确,缓解了数据稀疏问题,有效提高了推荐的准确率和效率。 相似文献
11.
为提升推荐系统的准确率,针对传统协同过滤(CF)推荐算法没有有效使用位置信息的问题,提出了一种基于位置的非对称相似性度量的协同过滤推荐算法(LBASCF)。首先,分别利用用户-商品评分矩阵和用户历史消费位置,计算出用户间的余弦相似性和基于位置的非对称相似性;其次,将余弦相似性与基于位置的相似性融合,得到一个新的非对称用户相似性,融合后的相似性能够同时反映用户在位置上和兴趣上的偏好;最后,根据用户的最近邻居对商品的评分向用户推荐新的商品。用某点评数据集和Foursquare数据集对算法的有效性进行了评估。在某点评数据集实验结果证明,与CF相比,LBASCF的召回率和精确率分别提高了1.64%和0.37%;与位置感知协同过滤推荐系统(LARS)方法比较,LBASCF的召回率和精确率分别提高了1.53%和0.35%。实验结果表明,LBASCF相对于CF和LARS在基于位置服务的应用中能够有效提高系统的推荐质量。 相似文献
12.
针对传统协同过滤推荐算法遇到冷启动情况效果不佳的问题,提出一种基于项目相似性度量方法(IPSS)的项目协同过滤推荐算法(ICF_IPSS),其核心是一种新的项目相似性度量方法,该方法由评分相似性和结构相似性两部分构成:评分相似性部分充分考虑两个项目评分之间的评分差、项目评分与评分中值之差,以及项目评分与其他评分平均值之差;结构相似性部分定义了共同评分项目占所有项目比重,并惩罚活跃用户的逆项目频率(ⅡF)系数。在Movie Lens和Jester数据集下测试算法准确率。在Movie Lens数据集下,当近邻数量为10时,ICF_IPSS的平均绝对偏差(MAE)和均方根误差(RMSE)分别比基于Jaccard系数的均方差异系数的项目协同过滤算法(ICF_JMSD)低3.06%和1.20%;当推荐项目数量为10时,ICF_IPSS的准确率和召回率分别比ICF_JMSD提升67.79%和67.86%。实验结果表明,基于IPSS的项目协同过滤算法在预测准确率和分类准确率方面均优于基于传统相似性度量的项目协同过滤算法,如ICF_JMSD等。 相似文献
13.
针对传统协同过滤推荐算法进行聚类后出现的推荐精度下降问题,提出了一种利用独特型网络模型对基于用户聚类的协同过滤算法加以改进的新思路。通过引入人工免疫中动态调节抗体浓度使免疫网络保持稳定的原理来调整邻居用户的数目,以保证邻居用户的多样性达到提高精度的目的。实验结果表明,该算法相对于传统的基于聚类的协同过滤算法而言,在提高推荐速度的同时保证了推荐的精度。 相似文献
14.
针对原始的基于用户(User-based)或基于评分项目(Item-based)的协同过滤推荐算法(CFR)大多采用"硬分类"式聚类,且具有数据稀疏性和可扩展性的问题,提出一种基于灰色关联分析的分布式协同过滤推荐算法。算法使用Hadoop分布式计算平台,首先,计算评分矩阵中每个评分项目的灰色关系系数;然后,计算各评分项目的灰色关联度(GRG);最后,根据GRG获得每个评分项目的近邻集合,对不同用户的待预测项目用对应的近邻集合对其评分进行预测。通过在MovieLens数据集上进行实验,与User-based和Item-based的CFR算法相比,该算法平均绝对误差分别下降了1.07%和0.06%,而且随着数据规模的扩展,通过增加集群节点,算法运行效率有相应的提升。实验结果表明,该推荐算法可以有效地实现大规模数据的推荐,并能解决数据可扩展性的问题。 相似文献
15.
针对高等教育本科教学场景中的学生成绩预测问题,提出了一种基于课程知识图谱(KG)的预测算法。首先,构造一个表示课程信息的课程知识图谱。然后,分别使用基于邻节点的方法和基于知识图谱表示学习的方法基于知识图谱计算课程在知识层面的相似度,并将课程的知识相似度集成到传统的成绩预测框架协同过滤(CF)中。最后,通过实验对比了融合知识图谱的算法和常见成绩预测算法在不同数据稀疏度场景下的性能。实验结果显示,在数据稀疏场景下,基于邻节点的算法和传统协同过滤算法相比,均方根误差(RMSE)下降约11%,平均绝对误差(MAE)下降约9%;基于图谱表示学习的算法与协同过滤算法相比RMSE下降17.55%,MAE下降11.40%。实验结果表明,运用知识图谱的协同过滤算法可使预测误差显著下降,验证了知识图谱可以作为历史数据缺乏场景下的信息补足,从而帮助协同过滤获得更好的预测效果。 相似文献
16.
为了实现对可信Web服务的推荐,在分析了Web服务推荐技术与电子商务推荐技术的不同的基础上,提出了一种基于协同过滤的可信Web服务推荐方法。首先,根据已有成果对待组装应用的可信需求进行评估,根据此需求对相似用户进行首次筛选;然后在首次筛选的用户中,根据用户使用服务后的评分数据和用户信息来对相似用户进行二次筛选,经过两次筛选得到最终推荐用户。在根据用户对服务的评分数据计算用户之间的相似性时,考虑了不同服务对于用户间相似性的贡献值;在根据用户信息计算用户之间的相似性时,考虑到用户信息之间非线性的特点,引入了欧几里得距离公式来计算其相似值;在产生推荐的过程中还考虑了不诚实用户和用户数不足的问题。模拟实验结果表明该方法能够有效地对可信Web服务进行推荐。 相似文献
17.
考虑到用户浏览路径、时间、浏览次数都是影响推荐准确度的重要因素,提出一种基于隐马尔可夫模型(HMM)的动态协同过滤推荐方法。该方法首先用HMM模型模拟用户浏览网页时的行为,根据用户浏览网页时的行为建立最近邻集合。由于数据不是简单的用户评分,而是用户浏览网页的路径,这样就解决了数据稀疏问题和最初评价问题。并且使用HMM代替简单的相似模型来度量用户相似性,提高了最近邻推荐的准确性,解决了实时性推荐和数据空间的可扩展的问题。然后,提出了喜好度的概念并给出了计算方法,喜好度概念的加入能为目标用户推荐更适合的商品。最后,结合喜好度给出了基于HMM的协同过滤预测模型。通过对一个实例的研究验证了所提出的算法以及推荐模型的可行性。 相似文献
18.
为了解决推荐系统的冷启动和数据稀疏性问题,研究人员利用用户之间的信任关系,提出了多种基于信任的协同推荐算法,这些方法提高了推荐覆盖率,然而推荐精确度却有所降低。因此,本文综合考虑用户之间的信任关系和用户的潜在特征,提出了基于信任和概率矩阵分解的协同推荐算法,首先通过融入用户的相似性、影响力、专业性等知识,计算用户之间不对称的信任关系;然后结合概率矩阵分解模型进行评分预测;最后在数据集上进行实验测试评估,实验表明该算法可以有效提高推荐结果的精确度。 相似文献
19.
针对协同过滤(CF)推荐方法用户的历史信息不足等问题,提出基于多分类器的迁移Bagging习题推荐算法。主要思路是把推荐问题投入迁移学习框架,将待推荐习题的用户作为目标域,从中搜索相似历史信息的用户作为辅助域,帮助训练目标域以得到更准确的分类结果。实验结果表明,所提方法在习题推荐库及公开数据上,比协同过滤算法性能提高了10%~20%;比单分类器Bagging迁移算法性能提升了5%~10%。该方法在一定程度上解决了习题推荐系统中存在的冷启动和数据稀疏问题,也可推广到商品推荐等电子商务平台。 相似文献
20.
利用推荐系统进行群组推荐时,群组成员之间的交互关系对推荐结果有很大影响,但传统的群组推荐算法较少考虑用户信任度的重要性,致使社交关系信息不能得到充分利用。在群组融合时考虑群组内用户间的交互关系,提出一种基于用户信任度和概率矩阵的群组推荐算法。在获取用户信任度数据后,使用概率矩阵分解(PMF)算法补全信任度矩阵并进行归一化处理,得到相似度矩阵,同时在后验概率计算过程中加入用户间的信任度因素,通过极大化后验概率获得预测评分。在此基础上,对群组中用户的权重进行归一化处理,使用基于用户交互关系的权重策略融合群组成员偏好,得到最终的推荐结果。在Epinions和FilmTrust数据集上的实验结果表明,该算法可使融合结果更具群组特性,同时提高推荐结果的可靠性和可解释性,且均方根误差和命中率均优于PMF、NeuMF、RippleNet等对比算法。 相似文献