首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
双波长K系数分光光度法同时测定原油中铝、铁   总被引:4,自引:0,他引:4       下载免费PDF全文
显色体系为Al3+(Fe3+)-邻硝基苯基荧光酮-CTMAB-OP,以硫脲掩蔽干扰离子Cu2+,氟化钠掩蔽Al3+,在610 nm波长下测定铁,再用K系数法在556 nm波长下测定铝,建立了双波长K系数-分光光度法同时测定原油中铝、铁的分析方法。对测定条件、共存元素干扰情况进行了考察。人工合成样品回收率:铁为98.3%~99.1%,铝为95.3%~98.2%;样品加标回收率:铁为95.4%~104.5%,铝为95.5%~100.5%。  相似文献   

2.
准确测定辛酸铑催化剂中杂质元素含量,是判定产品是否合格的重要指标之一。以往常采用直流电弧发射光谱法(摄谱法)进行检测,但测定周期长,且重复性较差。用电感耦合等离子体原子发射光谱法(ICP-AES)测定辛酸铑催化剂中微量杂质元素时,辛酸铑催化剂样品中含有的大量有机组分和铑基体会对测定有严重干扰。实验采用反复滴加硝酸消解样品中有机组分,再用王水溶解盐类,选用合适背景点扣除的方式消除铑基体的干扰,建立了使用ICP-AES测定辛酸铑催化剂中0.001%~0.1%(质量分数)Pt、Pd、Pb、Fe、Cu、Al、Ni等7种微量杂质元素的方法。各元素在0.10~10.00μg/mL范围内与其发射强度呈线性关系,相关系数均大于0.9999;方法检出限(μg/mL)为0.075(Pt)、0.0033(Pd)、0.015(Pb)、0.0036(Fe)、0.010(Cu)、0.001(Al)、0.012(Ni)。实验方法用于测定辛酸铑催化剂样品中Pt、Pd、Pb、Fe、Cu、Al、Ni,结果的相对标准偏差为(RSD,n=7)为1.4%~9.6%。按照实验方法测定辛酸铑催化剂中Pt、Pd、Pb、Fe、Cu、Al、Ni,并与直流电弧发射光谱法的测定结果进行比对,结果相一致。  相似文献   

3.
采用5.0 mL氢氟酸和10.0 mL硝酸混合酸消解样品,选择Ce 407.570nm、Cu217.895nm、Fe 234.350nm、Er 390.631nm、Mg 383.829nm、Mn 257.610nm、Pb 283.305nm、Zn 213.857nm为分析线,使用电感耦合等离子体原子发射光谱法(ICP-AES)进行测定,从而建立了电感耦合等离子体原子发射光谱法测定钼铌合金中Ce、Cu、Fe、Er、Mg、Mn、Pb、Zn等8种元素的分析方法。考察了主要元素Mo、Nb和Al对待测元素的影响,结果表明,这些元素对待测元素基本无影响。各元素校准曲线的线性相关系数均大于0.999;方法中各元素检出限为5.4~63μg/g。按照实验方法测定钼铌合金样品中Ce、Cu、Fe、Er、Mg、Mn、Pb、Zn,结果的相对标准偏差(RSD,n=6)为0.89%~4.4%;回收率为98%~102%。按照实验方法测定钼铌合金样品中Cu、Fe、Er、Mg、Mn、Pb、Zn、Ce,并与电感耦合等离子体质谱法(ICPMS)的测定结果进行比对,二者基本一致。  相似文献   

4.
采用盐酸和硝酸混合酸溶样,选择Cu 324.754nm、Mn 257.610nm、Zn 213.856nm、Fe 259.940nm、Al 396.152nm、Pb 220.353nm、Sn 189.989nm作为分析线,考察基体和共存元素对待测元素的干扰,并计算干扰系数以校正光谱干扰对测量结果产生的影响,从而建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定锰黄铜中Cu、Mn、Zn、Al、Fe、Pb、Sn的方法。结果表明:溶液中Cu质量浓度在1 000μg/mL以内,对Mn、Zn、Al、Fe、Sn的测定无明显影响,但对Pb影响较大。来自Cu 221.810nm对Pb 220.353nm分析线产生的谱线重叠型光谱干扰,可以采用干扰系数校正法很好地进行校正。样品中高含量元素Zn、Mn、Fe之间以及对其他元素的测定基本无影响。各元素校准曲线线性相关系数均不小于0.999 7;各元素检出限为0.000 1%~0.004 2%(质量分数)。按照实验方法测定锰黄铜标准样品中Cu、Mn、Zn、Al、Fe、Pb、Sn,结果的相对标准偏差(RSD,n=6)为0.49%~5.1%,测定值与认定值一致。  相似文献   

5.
锡铅焊料中的杂质元素对焊点的抗氧化性、润湿性、扩展面积有重要影响,因此对其进行测定意义重大。采用硝酸、氢氟酸溶解样品,选择H2动态反应池模式测定Fe,标准模式测定Al、P、Cu、Zn、As、Cd、Ag、Sb、Au、Bi,同时以Sc校正Al、P、Fe、Cu,以Cs校正Zn、As、Ag、Cd,以Tl校正Sb、Au、Bi,实现了电感耦合等离子体质谱法(ICP-MS)对锡铅焊料中这11种杂质元素含量的测定。在优化的实验条件下,11种杂质元素校准曲线的相关系数均大于0.999,方法的检出限在0.002~0.80μg/g范围内,测定下限在0.007~2.73μg/g范围内。用建立的实验方法测定锡铅焊料样品中Al、P、Fe、Cu、Zn、As、Cd、Ag、Sb、Au、Bi,平行测定11次结果的相对标准偏差(RSD)为0.85%~3.5%,加标回收率为90%~110%。将实验方法应用于锡铅焊料标准物质YT9302中Al、Fe、Cu、Zn、As、Sb、Bi共7种杂质元素的测定,结果与认定值一致。  相似文献   

6.
建立电感耦合等离子体质谱法(ICP-MS)测定催化裂化(FCC)催化剂样品中Fe,Ni,Cu,V,Al,Pb,Sb等7种微量金属元素的方法。样品用HNO3+HCl经微波消解后,试液直接用ICP-MS法同时测定上述7种元素,以Sc,Y,In,Bi作为内标物质,补偿了基体效应;选择适当的待测元素同位素克服了质谱干扰;确定了实验的最佳测定条件。结果表明,方法的检出限为0.019~0.072μg/L,回收率为95.6%~105.4%,RSD小于3.3%。该法已应用于FCC催化剂中微量金属元素的测定。  相似文献   

7.
采用氢氧化钾在700℃熔融20min,经盐酸酸化、稀释10倍后,选取Si 251.611nm、Al 396.153nm、Ca 317.933nm、Mg 285.213nm、Ba 233.527nm、P 334.940nm、Cu 213.617nm、Fe 327.393nm、Sr 407.771nm为分析线,使用电感耦合等离子体原子发射光谱法(ICPAES)同时测定Si、Al、Ca、Mg、Ba、P、Cu、Fe、Sr,从而建立了炼钢用脱氧剂中9种主、次量元素的测定方法。结果表明,与酸溶方式相比,采用碱熔前处理对常见的各类脱氧剂可以避免分解不彻底的问题。当称样量为0.1g时,加入2.0g氢氧化钾熔剂可以使样品熔解完全。采用基体匹配法绘制校准曲线可以有效消除基体效应的影响,各元素质量浓度在一定范围内与其发射强度呈线性,校准曲线的线性相关系数r≥0.999 8,各元素的检出限在0.001 6%~0.012%之间。按照实验方法测定脱氧剂样品中Si、Al、Ca、Mg、Ba、P、Cu、Fe、Sr,结果的相对标准偏差(RSD,n=11)在0.81%~4.5%之间。实验方法用于测定4个脱氧剂标准样品(E511d、YSB 14609-2001、YSB 14606-2001、YSB 14607-2001)中Si、Al、Ca、Mg、Ba、P、Cu、Fe、Sr,测定值与认定值吻合较好,相对误差在0.25%~7.14%之间。  相似文献   

8.
成勇 《冶金分析》2018,38(12):41-47
以V2O5、Cr2O3和TiO2直接还原熔炼钒铬钛合金的新工艺具有显著降低生产成本优势,但需解决原料、还原剂以及熔炼设备所引入杂质对产品品质的影响,为此,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定V-4Cr-4Ti合金中Al、As、Co、Cu、Fe、Mg、Mn、Ni、P、K、Na等11种微量杂质元素分析方法。方法重点考察了在V、Cr、Ti三元合金组分共存体系下,基体效应、光谱干扰和连续背景叠加等影响因素,归纳了基体及共存组分对待测元素高灵敏分析谱线的光谱干扰情况,优选了待测元素的分析谱线、背景校正区域以及光谱仪工作条件等参数。采用基体匹配和同步背景校正法消除高V、高Cr和高Ti共存基体的影响。结果表明:Al、As、Co、Cu、Fe、Mg、Mn、Ni、P的检测范围为0.001%~0.25%,K、Na的检测范围为0.002%~0.25%;校准曲线线性相关系数不小于0.9995,方法的测定下限为0.0012%(K)、0.0015%(Na)、0.0003%~0.0009%(其余元素)。按照实验方法测定4个V-4Cr-4Ti合金样品中Al、As、Co、Cu、Fe、Mg、Mn、Ni、P、K、Na,0.x%水平测定结果的相对标准偏差(RSD,n=8)小于5%,0.0x%~0.00x%水平测定结果的相对标准偏差(RSD,n=8)小于10%,即使低于方法检测下限0.001%水平测定结果的相对标准偏差(RSD,n=8)也小于15%。按照实验方法对4个V-4Cr-4Ti合金样品中Al、As、Co、Cu、Fe、Mg、Mn、Ni、P、K、Na进行加标回收试验,回收率为90%~114%。实验方法用于测定3个V-4Cr-4Ti合金样品中Al、As、Co、Cu、Fe、Mg、Mn、Ni、P、K、Na,与电感耦合等离子体质谱法(ICP-MS)测定结果相吻合。  相似文献   

9.
采用粉末样品压片法制样,选出3组元素测量条件,建立能量色散X-射线荧光光谱法测定铅冶炼鼓风炉渣样品中Pb,Cu,Zn,S,FeO,SiO2和CaO等组分。试验了压片前的样品粉碎和研磨时间对测量强度的影响,选择和制备了校准样品,使用经验系数法校正了基体效应及元素间谱线重迭的影响,同时对颗粒度和矿物效应作了部分校正。在选定的最佳实验条件下,方法的检出限范围为0.002%~0.020%。用于鼓风炉渣样品中Pb,Cu,Zn,S,FeO,SiO2和CaO等组分的测定,相对标准偏差(n=10)在0.16%~0.90%  相似文献   

10.
探讨了火花源原子发射光谱法测定FeCuNbSiB合金中铜、铌、硅和硼的分析条件。在高纯氩气(φ≥99.999%)流量为180 L/h和氩气冲洗时间为4 s,预燃(HEPS)时间为6 s,积分时间为8 s(硅)、8 s(铌)、3 s(硼)和3 s(铜)的最佳分析条件下,用自制的标准样品绘制了铜、铌、硅和硼的校准曲线。在校正了共存元素干扰影响后,拟合校准曲线。其中,用B 345.1 nm/Fe 360.7 nm 分析线对绘制高含量硼的校准曲线,硼的分析范围为0.94%~3.37%;用Nb 319.5 nm/Fe 297.1 nm分析线对绘制铌的校准曲线,使仪器软件中已建立的钢中铌的校准曲线得到了延伸,铌的分析范围扩展为0.002 0%~7.16%;用Si 390.6 nm/Fe 281.3 nm分析线对和Cu 212.3 nm/Fe 216.2 nm 分析线对分别绘制了硅和铜的校准曲线,使仪器软件中已建立的钢中硅和铜的校准曲线得到了充实,硅的分析范围为0.010 0%~19.40%,铜的分析范围为0.001 3%~3.95%。用此方法测定了FeCuNbSiB合金分析样品中铜、铌、硅和硼含量,其测定结果的相对标准偏差(n=8)小于1.0%,所得的分析结果与用重量法和电感耦合等离子体原子发射光谱法(ICP-AES)的测定值一致,并且实现了分析样品的一次激发可同时测定FeCuNbSiB合金分析样品中铜、铌、硅和硼以及其他合金元素。  相似文献   

11.
使用盐酸-硝酸-氢氟酸并采用微波消解法处理样品,选择Al 308.215nm和Si212.412nm作为分析线,基体匹配法配制标准溶液系列绘制校准曲线,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铝和硅,从而建立了微波消解-电感耦合等离子体原子发射光谱法(ICP-AES)测定铁硅铝磁芯中铝和硅的方法。结果表明,铝和硅的质量分数分别为1.00%~9.00%和2.50%~12.50%时与其发射强度呈线性,线性相关系数均不小于0.999 4;方法中铝和硅的检出限分别为0.020%和0.021%(质量分数)。实验方法应用于铁硅铝磁芯样品中铝和硅的测定,结果的相对标准偏差(RSD,n=6)为1.4%~2.2%;将测定结果与滴定法(测定铝)和重量法(测定硅)的测定结果进行比对,二者相吻合。  相似文献   

12.
杨丽  王金阳  张庸 《冶金分析》2013,33(6):63-66
探讨了电感耦合等离子体原子发射光谱法(ICP-AES)测定镍基钎焊料中铬和硅的分析条件。试样经王水和氢氟酸混合酸溶解,选择267.716(125) nm和251.612(133) nm的光谱线分别作为铬和硅的分析线,并采用基体匹配法降低了基体效应,ICP-AES测定了镍基钎焊料中铬和硅含量。实际样品中铬和硅的测定结果与过硫酸铵氧化滴定法和高氯酸脱水法相符,铬和硅的相对标准偏差(n=6)分别为0.55%~0.73%和0.71%~1.0%,加标回收率分别为100%~101%和99%~100%。  相似文献   

13.
高温合金中硅含量的高低影响材料的物理和化学性能,准确测定高温合金中硅是对材料进行质量控制的重要保证。而使用电感耦合等离子体原子发射光谱法(ICP-AES)测定高温合金中痕量硅时存在明显的基体效应和复杂的光谱干扰。采用盐酸-硝酸混合酸和氢氟酸溶解样品,采用基体匹配法配制标准溶液系列消除基体效应的影响,选择Si 184.685nm、Si 185.005nm、Si 251.611nm作为分析线,利用硅与氢氟酸形成挥发性物质的特性,以及硅受钽、钼、铼、钨等合金元素干扰的特点,使用干扰等效浓度(IEC)法和基体空白差减法对测定结果进行校正,建立了使用ICP-AES测定复杂高温合金中痕量硅的分析及干扰校正方法。硅的质量分数在0.005%~0.40%范围内校准曲线呈线性,线性相关系数r达0.9999;方法中硅的检出限小于0.001%。方法应用于高温合金样品中硅的测定,结果的相对标准偏差(RSD,n=7)小于2%;采用两种校正方法的结果与辉光放电质谱法(GD-MS)的结果进行比对,一致性较好。  相似文献   

14.
用微波消解技术,以混合酸(盐酸-硝酸-硫酸-双氧水)消解磷酸铁锂样品,建立了电感耦合等离子体质谱法(ICP-MS)测定磷酸铁锂中钠、镁、铝、钙、钛、铬、锰、钴、镍、铜、锌、铅等12种微量杂质元素的分析方法。确定了最佳实验条件如下:采用普通模式测定元素铅,氦碰撞模式测定钠、镁、铝、钛、铬、锰、钴、镍、铜、锌,氢气反应模式测定钙;碰撞气He气流速为5.6 mL/min,反应气H2的流速为6.2 mL/min;钠、镁、铝、钙、钛采用钪为内标进行基体校正,铬、锰、钴、镍、铜、锌采用铱进行校正,铅采用铋进行校正。方法检出限在4.5~28.9 ng/L之间。采用实验方法对磷酸铁锂实际样品中各元素进行测定,结果的相对标准偏差(RSD,n=11)在0.6%~1.9%之间,加标回收率为94%~107%。方法测得结果与电感耦合等离子体原子发射光谱法(ICP-AES)进行对比分析,结果基本一致。  相似文献   

15.
杜米芳 《冶金分析》2017,37(4):71-75
使用盐酸-硝酸-氢氟酸以及微波消解的方式溶解镍基合金样品,选择Si 251.611 nm或Si 288.158 nm为分析线,Ar 420.069 nm为内标元素谱线,并用两点校正法扣除背景,采用基体匹配法配制标准溶液系列并绘制校准曲线以消除基体效应的影响,建立了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定镍基合金中硅的分析方法。硅质量分数在0.008%~5.00%范围内(Si 251.611 nm),以及硅质量分数在0.015%~5.00%范围内(Si 288.158 nm)分别与其发射强度呈线性,相关系数均大于0.999;方法中硅的检出限不大于0.005%(质量分数)。方法应用于镍基合金样品中硅的测定,结果的相对标准偏差(RSD,n=10 )小于1%。按照实验方法测定镍基合金标准样品中硅,测定结果与认定值相吻合。  相似文献   

16.
采用氢氟酸-硝酸溶解样品,高氯酸冒烟驱除硅、氟,加入抗坏血酸、显色溶液后直接显色测定,建立了磷钼蓝分光光度法测定工业硅中0.001%~0.27%磷含量的分析方法。结果表明,溶液中磷质量浓度在0.05~1.40 μg/mL范围内符合比尔定律;方法中磷的检出限为0.000 46 μg/mL;表观摩尔吸光系数ε825=2.75×104 L·mol-1·cm-1;样品中其他共存离子不干扰测定。不同实验室应用实验方法测定3个工业硅行业标准样品中磷的结果均与认定值吻合;按照实验方法测定2个工业硅行业标准样品中磷的结果与国标方法GB/T 14819.4-2012和GB/T 14819.5-2012的测定值均基本一致。将实验方法用于工业硅行业标准样品和工业硅实际样品中0.001%~0.27%磷的测定,实验所得结果的相对标准偏差(RSD,n=22)为1.4%~4.5%。
  相似文献   

17.
高铍铍铝合金中的杂质元素硅对高铍铍铝合金热等静压、精密铸造及耐腐蚀性能影响较大,需要对其含量进行严格控制,所以测定高铍铍铝合金中的硅具有重要意义。采用硫酸(1+1)、硝酸和氢氟酸于水浴条件下溶解试样,用硼酸掩蔽剩余氟离子,在0.10~0.15mol/L硫硝混酸介质下,钼酸铵与硅反应生成硅钼黄杂多酸,稳定20min后,用草酸掩蔽铁离子,同时加入抗坏血酸将硅钼黄还原成硅钼蓝,放置10min,于波长820nm处采用分光光度法进行测定,实现了硅钼蓝分光光度法对高铍铍铝合金(铍的质量分数为60%~70%)中硅的测定。在优化的实验条件下,试液中硅质量在10~60μg范围内与其对应的吸光度呈良好的线性关系,相关系数为1.000,方法中硅的检出限和测定下限分别为0.0021%(质量分数,下同)和0.0071%。按照实验方法测定60BeAl和70BeAl两个高铍铍铝合金试样中硅含量,测得结果的相对标准偏差(RSD,n=8)为2.9%~3.4%。将实验方法用于测定高铍铍铝合金实际试样中硅含量,结果与电感耦合等离子体原子发射光谱法(ICP-AES)相吻合。  相似文献   

18.
卞大勇 《冶金分析》2018,38(5):72-77
碳化硅是应用最广泛、最经济的一种耐火原料,由于碳化硅贸易活跃,需要对表面杂质成分进行快速、准确的测定。样品采用氢氟酸、硝酸溶解,高氯酸冒烟至近干,再使用盐酸溶解可溶性盐类,通过过滤使得被测成分与碳化硅分离,选择Fe 259.939nm、Al 394.401nm、Ca 317.933nm、Mg 285.213nm、K 766.490nm、Na 589.592nm为分析谱线,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铁、铝、钙、镁、氧化钾、氧化钠,从而建立了使用ICP-AES测定高含量碳化硅表面铁、铝、钙、镁、氧化钾、氧化钠等杂质成分的方法。铁在0.020%~0.50%,铝、钙在0.020%~0.20%,镁、氧化钾、氧化钠在0.0020%~0.020%范围内校准曲线呈线性,线性相关系数均不小于0.9998。方法检出限为0.000042%~0.00064%(质量分数)。实验方法用于测定碳化硅样品表面铁、铝、钙、镁、氧化钾、氧化钠,结果的相对标准偏差(RSD,n=10)为1.9%~9.5%。按照实验方法测定碳化硅样品表面铁、铝、钙、镁、氧化钾、氧化钠,测定值与国家标准方法的测定结果相吻合。  相似文献   

19.
成勇 《冶金分析》2016,36(9):66-72
样品采用盐酸溶解后,以电感耦合等离子体原子发射光谱法(ICP-AES)同时测定了偏钒酸铵中10种微量杂质元素铝、铁、硅、磷、铅、砷、铬、钾、钠、钙的含量。由于样品溶液中含有2.18 g/L钒和0.78 g/L铵根,故实验重点考察了2.18 g/L钒标准溶液、0.78 g/L铵根标准溶液及两者的混合标准溶液,以及10 mg/L各待测元素标准溶液、水和5%(V/V)盐酸试剂空白的谱线重叠与连续背景叠加等光谱干扰以及基体效应对待测元素测定的干扰影响情况。结果表明:该质量浓度的铵根对测定无影响,部分待测元素灵敏谱线受到钒基较严重的光谱重叠或旁峰干扰;高质量浓度钒的基体效应、连续背景叠加等影响因素导致铝、铁、硅、磷、铅、砷、铬、钙的谱线强度增加,对其产生正干扰,同时高质量浓度钒的基体效应也导致钾、钠的谱线强度降低,对其产生负干扰。为此实验方法采用基体匹配和同步背景校正相结合的校正措施消除了高钒基体影响,同时试验优选了未受光谱干扰的各待测元素分析谱线及其背景校正和检测区域。结果表明,背景等效浓度为-0.000 3%(Na)~0.000 4%(Ca);铝、铁、硅、磷、铅、砷、铬、钙在0.001%~0.60%(质量分数)范围内,钾、钠在0.005%~0.60%(质量分数)范围内,其质量分数与其对应的发射强度呈线性,各元素校准曲线的相关系数均不小于0.999;方法中各元素检出限为0.000 1%~0.000 6%。按照实验方法测定两个偏钒酸铵样品中铝、铁、钾、钠、硅、磷、铅、砷、铬、钙,结果的相对标准偏差(RSD,n=8)分别为小于10%(质量分数为0.001%~0.010%),小于7%(质量分数为0.010%~0.050%),小于3%(质量分数大于0.050%);实验方法用于测定4个偏钒酸铵样品中铝、铁、硅、磷、铅、砷、铬、钾、钠、钙,结果与电感耦合等离子体质谱法(ICP-MS)测定结果相吻合。  相似文献   

20.
霍红英 《冶金分析》2018,38(2):65-70
利用X射线衍射法对钒铁酸溶前后的物相进行对比分析,发现酸溶残渣的主要成分为硅铝氧化物,因此可以使用混酸、在高压下提高反应温度的微波消解技术处理样品。采用硝酸、盐酸、氢氟酸混合酸并使用微波消解两步升温法处理样品,选择Si 251.611nm、Al 394.401nm、Mn 257.610nm、P 178.284nm、As 189.042nm、Cu 324.754nm、Ni 231.604nm为分析谱线,采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定硅、铝、锰、磷、砷、铜、镍,从而建立了钒铁中硅、铝、锰、磷、砷、铜、镍等杂质元素的分析方法。各待测元素校准曲线的线性相关系数r均大于0.9995;方法中各元素检出限为0.0001%~0.0013%(质量分数)。方法应用于两个钒铁标准样品中硅、铝、锰、磷、砷、铜、镍测定,结果的相对标准偏差(RSD,n=8)不大于4%,测定值与认定值相符合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号