首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
对3种聚四氟乙烯复合材料与45#钢和表面阳极氧化铝合金配副进行了摩擦性能测试,测定了不同润滑条件下聚四氟乙烯复合材料的摩擦学性能。用扫描电子显微镜观察了聚四氟乙烯复合材料与表面阳极氧化铝合金摩擦磨损后的表面形貌。结果表明:在油润滑条件下,聚四氟乙烯复合材料摩擦因数和磨痕宽度最小,在干摩擦条件下,聚四氟乙烯复合材料摩擦因数最大;在水润滑条件下,聚四氟乙烯复合材料磨痕宽度最大;在油润滑条件下,摩擦表面可形成均匀连续的转移膜和润滑油膜,表面光滑,从而降低了磨损。  相似文献   

2.
采用常温机械共混、高温模压的方法,制备了不同质量分数聚四氟乙烯(PTFE)微粉和碳纤维改性的聚醚醚酮(PEEK)复合材料,对其压缩强度、摩擦磨损性能进行了研究,并分析了其磨损后的表面形貌。结果表明:随着PTFE微粉质量分数的增加,PEEK复合材料的压缩强度呈下降趋势,当PTFE微粉质量分数为40%时,其压缩强度下降至60 MPa。随着聚碳纤维质量分数的增加,PEEK复合材料的压缩强度呈上升趋势。随着PTFE微粉和碳纤维质量分数的增加,PEEK复合材料的干摩擦因数和磨痕宽度逐渐下降,当PTFE微粉质量分数为40%时,PEEK复合材料干摩擦因数下降至0.21,其干摩擦磨痕宽度略有上升。随着碳纤维质量分数的增加,PEEK复合材料在油润滑条件下摩擦因数和磨痕宽度较低并略有下降。PEEK复合材料在干摩擦条件下的磨损机制以磨粒磨损为主,伴有疲劳磨损;在油润滑时,摩擦面可形成稳定连续的润滑膜而保持光滑。PEEK复合材料具有较高的压缩强度,摩擦磨损性能良好,可以制作各种滑动轴承、密封圈等特种机械零部件。  相似文献   

3.
研究了不同聚四氟乙烯(PTFE)微粉质量分数改性聚酮(PK)的力学性能及摩擦磨损性能,并分析了其在不同润滑条件下的摩擦磨损机理。结果表明:填充PTFE微粉后PK的拉伸强度、压缩强度和邵氏硬度下降;在干摩擦条件下,随着PTFE微粉质量分数的增加,PK复合材料的摩擦因数和磨痕宽度呈下降趋势,当PTFE微粉质量分数为6%时,转移膜最连续,磨痕宽度最低,磨损过程以黏着磨损为主;在油润滑条件下,润滑油和PTFE微粉协同作用,PK复合材料的摩擦因数和磨痕宽度均较干摩擦时明显下降。  相似文献   

4.
陈向荣  姜文军 《塑料》2003,32(2):23-25
用M 2000型摩擦磨损试验机研究了干摩擦条件下硫酸钡、载荷、对磨时间对聚四氟乙烯复合材料摩擦磨损性能的影响。结果表明:在本实验采用的条件下,硫酸钡/PTFE复合材料的摩擦因数随着硫酸钡含量的增加而增大,抗磨损能力则有一个最佳含量;随着载荷的增加,材料的摩擦因数、磨损量和磨痕宽度也随之增大;磨损量随着对磨时间的延长,波动变小并趋于稳定。  相似文献   

5.
采用差示扫描量热仪研究了聚四氟乙烯/聚苯酯(PTFE/POB)复合材料的结晶性能,研究了复合材料在干摩擦条件下和45号钢对磨的摩擦性能,并采用扫描电镜观察了复合材料的磨损表面形貌。探讨了POB含量对复合材料的结晶性能和摩擦性能的影响。结果表明,加入POB后,复合材料的结晶度增加,在POB含量为20 %时结晶度出现峰值。复合材料的结晶速率和摩擦因数均随POB含量的增加而增大,磨痕宽度随POB的含量增加而大幅减小。  相似文献   

6.
采用冷压-烧结成型工艺制备了聚苯酯/MoS_2填充聚四氟乙烯复合材料,考察了聚苯酯含量对复合材料力学性能、聚苯酯和MoS_2含量对复合材料与铝合金及其阳极氧化表面摩擦学性能的影响,用扫描电子显微镜观察了复合材料磨损后的表面形貌。结果表明:填充聚苯酯降低了复合材料的拉伸强度和断裂伸长率,提高了球压痕硬度;随着聚苯酯和MoS_2含量的增加,复合材料对铝合金及其阳极氧化表面摩擦因数逐步减小,磨痕宽度降低。  相似文献   

7.
通过控制聚酰亚胺摩擦性能测试时的载荷和摩擦速度,改变对偶件相对硬度,在室温空气环境下进行环-环接触式干摩擦试验,主要考察对偶件相对硬度的改变对聚酰亚胺材料摩擦性能的影响。同时利用扫描电子显微镜观察对偶件和材料表面摩擦磨损形貌并分析摩擦磨损机理。结果表明,随着对偶件相对硬度的增加,材料的摩擦因数呈现先减小后增大的趋势,摩擦表面黏着磨损逐渐转变为磨粒磨损,材料摩擦因数最低时相对对偶件硬度为30HRC左右,磨损率出现波动变化。控制载荷不变,材料摩擦因数最低时所对应的对偶件相对硬度随摩擦速度的提高而略有降低;控制摩擦速度不变,材料摩擦因数最低时所对应的对偶件相对硬度随载荷的提高而略有升高。  相似文献   

8.
以聚四氟乙烯(TPFE)为基体,通过添加10%、15%、20%、25%、30%的短切纤维制备纤维填充复合材料,研究了其摩擦磨损等相关性能。结果表明:短切纤维的填充增强了材料的压缩强度和硬度,但拉伸强度减弱;随着短切纤维含量的增多,磨痕宽度越来越小,材料的耐磨性能不断提高,摩擦系数也随之下降;电镜结果显示TPFE复合材料摩擦表面短切纤维分布均匀且无明显带状磨痕,但存在少量短切纤维剥离现象,分析发现剥离主要发生于摩擦的磨合阶段,不影响材料稳定磨损阶段的性能。  相似文献   

9.
制备了多相混杂填充超高相对分子质量聚乙烯(UHMWPE)复合材料,研究其摩擦、磨损性能。结果表明,填料的加入可以缩短磨合期,延长稳定磨损期。多相混杂复合材料具有较低的摩擦因数,较好的耐磨性能。含质量分数为70%UHMWPE、质量分数为5%CF(碳纤维)、质量分数为10%PHBA(聚苯酯)、质量分数为15%PTW(六钛酸钾晶顺)的复合材料具有最好的性能,其摩擦因数低、磨痕宽度小、受摩擦速度和载荷的影响也比较小。磨损表面扫描电镜照片显示,纯UHMWPE表面较为粗糙,呈现粘着磨损和疲劳磨损特征,混杂填料试样表面光滑,不存在疲劳磨损特征。  相似文献   

10.
通过添加聚丙烯(PP)和交联聚丙烯(PP-X)对超高分子量聚乙烯(UHMWPE)进行改性,研究了UHMWPE及其共混物的摩擦磨损性能.结果表明,在200 r/min滑动速度下,当PP或PP-X的质量分数为30%时,UHMWPE/PP的摩擦因数降至0.13,降幅达38.1%,磨痕宽度降至5.05 mm;UHMWPE/PP-X的摩擦因数降到0.12,降幅达42.9%,磨痕宽度则降至4.50 mm,UHMWPE/PP-X具有更优异的摩擦磨损性能.负载增大,UHMWPE及其共混物的摩擦磨损性能降低.磨损时间小于60 min,UHMWPE及其共混物的摩擦因数和磨痕宽度变化不大;超过60 min,摩擦因数和磨痕宽度均增大,UHMWPE/PP-X的增幅最小.高速滑动下UHMWPE/PP-X的摩擦磨损性能最高.  相似文献   

11.
通过热模压成型工艺制备了聚酰亚胺(PI)/石墨(NG)复合材料,对其摩擦性能、断面及磨痕形貌进行了测试与表征。结果表明,NG在PI基体中沿着与成型压力垂直的方向取向;当载荷不变且滑动速度较低时,垂直于摩擦面的NG比平行于摩擦面的NG更能降低PI的摩擦因数;随着滑动速度的提高,这种情况发生转变,而提高载荷后,转变点向低速移动;对比摩擦性能与磨痕形貌的结果发现二者存在紧密的联系,磨痕的表面越光滑、粗糙度越低,摩擦因数与磨损率也越低。  相似文献   

12.
通过冷压烧结法制备了聚四氟乙烯(PTFE)与钛酸酯和硅烷偶联剂修饰的纳米碳化硅(nano-SiC)复合材料,采用45#钢为摩擦对偶件的MM-200型摩擦磨损试验机,在室温干摩擦条件下测试了复合材料的摩擦学性能,用扫描电子显微镜(SEM)对磨损表面进行了观察并分析了磨损机理。结果表明:纳米SiC的加入能提高PTFE复合材料的硬度和耐磨性;偶联修饰改善了复合材料的摩擦学性能;与硅烷相比,钛酸酯偶联修饰nano-SiC/PTFE复合材料的硬度和摩擦学性能更好。两种偶联修饰复合材料的表面磨损情况相似,主要表现为粘着磨损,而未经偶联处理nano-SiC的复合材料在粘着磨损的同时出现了疲劳磨损。  相似文献   

13.
通过冷压烧结成型工艺制备了纳米二氧化硅(SiO_2)填充改性聚四氟乙烯(PTFE)复合材料,探究了不同添加比例的纳米SiO_2/PTFE复合材料在不同转速下摩擦磨损情况。采用三维视频显微镜观察了样品的表面磨痕深度,借助扫描电镜观察摩擦表面形貌并分析磨损机理。结果表明,填充纳米SiO_2后的PTFE复合材料其摩擦因数虽有一定程度的升高,但其体积磨损率却大幅降低。且当纳米SiO_2填充质量分数为5%时,复合材料的体积磨损率降到最低,并在转速为80 r/min时较纯PTFE降低了89.5%。观察分析微观形貌发现,随着纳米SiO_2含量的增大,复合材料的磨损机理逐渐由犁耕磨损和黏着磨损向磨粒磨损转变,且当纳米SiO_2填充含量为10%时,出现轻微的疲劳磨损。  相似文献   

14.
PTFE/BaSO4复合材料摩擦磨损性能研究   总被引:1,自引:0,他引:1  
用M-2000型摩擦磨损试验机研究了干摩擦条件下BaSO4用量,载荷,对磨时间对聚四氟乙烯(PTFE)复合材料摩擦磨损性能的影响。在本实验条件下,PTFE/BaSO4复合材料的摩擦系灵敏随着BaSO4含量的增加而增大,抗磨损能力则有一个最佳含量;随着载荷的增加,材料的摩擦系数,磨损量和磨痕宽度也随之增大,磨损量随着对磨时间的延长而波动变小并趋于稳定。  相似文献   

15.
通过添加锡青铜粉对聚四氟乙烯(PTFE)材料进行改性,探讨了复合材料在干摩擦和油润滑条件下与铝合金和阳极氧化铝合金的磨损机理。结果表明:填充锡青铜粉后,复合材料对铝合金在干摩擦和油润滑条件下的磨损加剧,拉伤了对偶,磨损以磨粒磨损和疲劳磨损为主;复合材料对阳极氧化铝合金在油润滑条件下耐磨性能有所改善,在干摩擦条件下,锡青铜粉从基体料中脱落,对偶表面出现了较深的犁沟,磨损以磨粒磨损和粘着磨损为主。  相似文献   

16.
纳米氧化铝改性聚四氟乙烯的摩擦磨损性能研究   总被引:2,自引:0,他引:2  
以纳米Al2O3作为填料填充改性聚四氟乙烯(PTFE),采用模压烧结成型的方法制备了不同纳米Al2O3含量的PTFE/纳米Al2O3复合材料,考察了偶联剂改性前后纳米Al2O3及其含量对复合材料硬度、摩擦系数和磨痕宽度的影响,并利用扫描电子显微镜对复合材料的磨屑和磨损表面进行了微观分析。结果表明,随着纳米Al2O3含量的增加,复合材料的硬度和摩擦系数逐渐增大,磨痕宽度先大幅下降而后略有增加。另外,相对于未改性纳米Al2O3,PTFE/偶联剂改性纳米Al2O3复合材料的硬度和摩擦系数均较低,其磨痕宽度则较高。  相似文献   

17.
路琴 《中国塑料》2009,23(3):28-31
用摩擦磨损试验机对纳米碳化硅(SiC)及其与石墨、二硫化钼(MoS2)混合填充聚四氟乙烯(PTFE)复合材料在干摩擦条件下与45#钢对磨时摩擦磨损性能进行了研究,用洛氏硬度计对PTFE及其复合材料的硬度进行了测量,用扫描电子显微镜对PTFE复合材料磨损表面进行了观察。结果表明,纳米SiC的加入能提高PTFE复合材料的硬度和耐磨性,纳米SiC与MoS2混合填充会使PTFE复合材料的耐磨性提高更多,特别是在载荷增大时其耐磨效果更好。纳米SiC填充PTFE复合材料的摩擦因数比纯PTFE大,且随载荷增加有所减小, MoS2、石墨的加入可降低PTFE的摩擦因数。  相似文献   

18.
采用改良Hummer法制备了氧化石墨烯(GO),通过热压成型工艺制备了GO/超高分子量聚乙烯(UHMWPE)复合材料,在真空环境下采用γ射线对其进行辐照交联处理,并将部分样品置于80℃环境下加速老化处理21d。利用摩擦磨损实验机研究了复合材料在小牛血清润滑介质下的摩擦学性能;利用扫描电子显微镜(SEM)和三维表面轮廓仪观察试样表面磨痕并计算相应的磨损率。结果表明,在小牛血清润滑介质下,GO填充与辐照交联改性处理可以降低UHMWPE的摩擦因数和磨损率,协同提高其耐磨性,但对摩擦因数的影响并不显著。加速老化处理显著增加辐照UHMWPE及辐照GO/UHMWPE复合材料的摩擦因数和磨损率,降低了其摩擦磨损性能。GO填充降低了辐照UHMWPE在加速老化处理后摩擦因数和磨损率,增强了其摩擦学性能。  相似文献   

19.
韩基泰  段为朋 《塑料》2023,(5):22-26
采用热压成型结合低温扩散(120℃)的方法制备了维生素E(VE)-辐照氧化石墨烯/超高分子量聚乙烯(GO/UHMWPE)复合材料,并且,采用加速老化的方法(80℃,21 d)对其进行了进一步处理。利用摩擦磨损试验机和扫描电子显微镜(SEM)等仪器研究了复合材料生物摩擦学性能的变化,计算摩擦因数和磨损率,分析了磨痕表面形貌及减摩耐磨机理。研究结果表明,加速老化处理后,复合材料的摩擦因数和磨损率分别增大了87.4%和99.5%,生物摩擦学性能明显降低;当加速老化处理过程中存在VE时,复合材料的摩擦因数和磨损率分别降低了33.7%和26.4%,生物摩擦学性能得到显著改善;加速老化处理导致复合材料表面出现疲劳磨损和磨粒磨损2种磨损形式,而VE具有明显的减摩作用。  相似文献   

20.
SiC一石墨填充PTFE复合材料的摩擦磨损性能研究   总被引:4,自引:2,他引:2  
在聚四氟乙烯(PTFE)中分别填充碳化硅(SiC),石墨及不同配比的SiC-石墨混合物,制备了具有不同力学和摩擦学性能的PTFE基复合材料。探讨了填料组成对材料硬度及干摩擦条件下与不锈钢环对磨时摩擦磨损性能的影响,并研究了PTFE基复合材料的磨损表面和磨屑形貌。结果表明,填充适量的SiC-石墨混合物既能增加PTFE的承载能力,又可保持良好的摩擦学性能;不同复合材料的磨损机理不同,磨损表面有磨屑形貌  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号