首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
何海涛  刘宏民  蒋岳峰 《钢铁》2007,42(1):55-58
针对双机架平整机的特性,以基态弯辊力下带材出口板形最好为准则,提出具有双机架平整机伸长率分配系数计算功能的轧制力模型;在此基础上,为了改善传统轧制力模型的预报精度,提出了先通过神经网络利用在线测得的实际数据预测变形抗力和摩擦因数,再与轧制力机理模型自学习过程相结合的轧制力预报新方法;并将其应用于宝钢1220双机架平整机的生产实践,结果表明此模型可以高精度地预报轧制压力.  相似文献   

2.
轧制力预报一直是热连轧过程控制模型的核心,浅层神经网络对复杂函数的表示能力有限,而深度学习模型通过学习一种深层非线性网络结构,实现复杂函数逼近。利用深度学习框架TensorFlow,构建了一种深度前馈神经网络轧制力模型,采用BP算法计算网络损失函数的梯度,运用融入Mini-batch策略的Adam优化算法进行参数寻优,采用Early-stopping、参数惩罚和Dropout正则化策略提高模型的泛化能力。基于上述建模策略,针对宝钢1880热连轧精轧机组的大量轧制历史数据进行了建模实验,对比分析了4种不同结构的前馈网络预测精度。结果表明,相比于传统SIMS轧制力模型,深度神经网络可实现轧制力的高精度预测,针对所有机架的预测精度平均提升21.11%。  相似文献   

3.
摘要:轧制力预报一直是热连轧过程控制模型的核心,浅层神经网络对复杂函数的表示能力有限,而深度学习模型通过学习一种深层非线性网络结构,实现复杂函数逼近。利用深度学习框架TensorFlow,构建了一种深度前馈神经网络轧制力模型,采用BP算法计算网络损失函数的梯度,运用融入Mini batch策略的Adam优化算法进行参数寻优,采用Early stopping、参数惩罚和Dropout正则化策略提高模型的泛化能力。基于上述建模策略,针对宝钢1880热连轧精轧机组的大量轧制历史数据进行了建模实验,对比分析了4种不同结构的前馈网络预测精度。结果表明,相比于传统SIMS轧制力模型,深度神经网络可实现轧制力的高精度预测,针对所有机架的预测精度平均提升21.11%。  相似文献   

4.
轧制力是影响中厚板厚度精度和板型的关键因素。兴澄特钢中厚板轧机二级模型采用传统Sims公式计算轧制力,精度较低。为提高轧制力预报精度,首先基于大量历史生产数据,通过主成分分析法对影响轧制力的因素进行处理和分析,选出权重较大的影响因子;其次选取现场代表钢种进行热模拟压缩实验,在此基础上提出基于极限学习机(ELM)的综合神经网络轧制力预报模型,即先通过化学成分计算出基准变形抗力,再将其作为轧制力神经网络输入变量进行轧制力预报。建模采用10折10次交叉验证确定最佳网络隐层节点数,并用现场实际生产过程数据对网络进行训练与测试。综合神经网络模型投入现场生产,轧制力预报相对误差±10%以内占比提高15.61%,钢板头部厚度命中率提高1.9%。  相似文献   

5.
摘要:轧制力预报一直是热连轧过程控制模型的核心,浅层神经网络对复杂函数的表示能力有限,而深度学习模型通过学习一种深层非线性网络结构,实现复杂函数逼近。利用深度学习框架TensorFlow,构建了一种深度前馈神经网络轧制力模型,采用BP算法计算网络损失函数的梯度,运用融入Mini batch策略的Adam优化算法进行参数寻优,采用Early stopping、参数惩罚和Dropout正则化策略提高模型的泛化能力。基于上述建模策略,针对宝钢1880热连轧精轧机组的大量轧制历史数据进行了建模实验,对比分析了4种不同结构的前馈网络预测精度。结果表明,相比于传统SIMS轧制力模型,深度神经网络可实现轧制力的高精度预测,针对所有机架的预测精度平均提升21.11%。  相似文献   

6.
轧制力预测中RBF神经网络的组合应用   总被引:1,自引:0,他引:1  
 传统的数学模型无法达到冷连轧控制的尺寸精度要求。针对传统轧制力模型的固有缺陷,为提高冷连轧机组轧制力计算精度,合理选择、更新和预处理训练样本,采用RBF神经网络预测冷轧带钢屈服应力并把它用于传统轧制力计算模型,获得较高的轧制力预测精度。而后使用RBF长期数据修正网络和RBF短期数据修正网络得到长期数据修正网络和短期数据修正网络的修正系数,对轧制力计算值进一步修正,从而进一步提高轧制力预报精度。上述方法直接用于某冷连轧机组,轧制力预测误差在±6%之内。这充分证明RBF网络可以成功用于轧制过程控制并满足实际生产的需要。  相似文献   

7.
摘要:轧制力是影响中厚板厚度精度和板型的关键因素。兴澄特钢中厚板轧机二级模型采用传统Sims公式计算轧制力,精度较低。为提高轧制力预报精度,首先基于大量历史生产数据,通过主成分分析法对影响轧制力的因素进行处理和分析,选出权重较大的影响因子;其次选取现场代表钢种进行热模拟压缩实验,在此基础上提出基于极限学习机(ELM)的综合神经网络轧制力预报模型,即先通过化学成分计算出基准变形抗力,再将其作为轧制力神经网络输入变量进行轧制力预报。建模采用10折10次交叉验证确定最佳网络隐层节点数,并用现场实际生产过程数据对网络进行训练与测试。综合神经网络模型投入现场生产,轧制力预报相对误差±10%以内占比提高15.61%,钢板头部厚度命中率提高1.9%。  相似文献   

8.
基于遗传神经网络的不锈钢带冷轧轧制力模型   总被引:2,自引:0,他引:2  
张清东  徐兴刚  于孟  瞿标  李实 《钢铁》2008,43(12):46-0
 为了提高工厂从国外引进的以Bland Ford公式为基础的冷轧不锈钢带轧制力模型的计算精度,将基于遗传算法的BP神经网络与现有变形阻力和轧制压力解析数学模型相结合,建立了变形阻力和轧制压力修正模型。将在生产现场采集的部分过程记录数据,进行分类和预处理后作为训练样本用于训练遗传神经网络模型。将其他现场实测数据用于验证所建的轧制力模型,计算结果表明所建的轧制力模型具有较高的计算精度。  相似文献   

9.
为了改善国内某钢铁厂炉卷轧机的轧制力模型的预报精度,提出将结合热模拟实验建立的传统轧制力模型计算值作为Elman神经网络的一个输入项,将传统数学模型预报的轧制力与实测轧制力的相对误差作为此神经网络输出项的方式构建网络模型,通过大量的在线数据分析,这种将神经网络与传统数学模型相结合的方法明显地改善了轧制力的预报精度。该神经网络模型可为以轧制力为主要控制目标的炉卷轧机的过程自动化系统提供可靠的模型参数。  相似文献   

10.
一种改进的板带在线控制算法的研究   总被引:1,自引:0,他引:1  
为了提高板带轧制力的计算速度和计算精度,提出了离散块元法。该法是将变形区划分为有限离散单元,考虑剪切变形作用,经BP神经网络训练获取其各种工况下的剪切变形因数模型而建立的高速计算模型,在平面变形条件下实现了对板带轧制力的预测,经该方法建立的轧制力计算模型具有较高的计算精度和计算速度,并在现场中得到了应用。  相似文献   

11.
 介绍预计算轧制规程中所使用的轧制力模型,在此基础上根据轧制过程中的仪表反馈数据开发出一种新的轧制力自学习模型。并对轧制力自学习系数层别划分的方法,依据和效果做了系统的分析。现场在线应用结果表明:给出的轧制力模型具有良好的预测精度,末道次轧制力预测误差可以控制在3%以内,其他道次可以控制在5%以内。  相似文献   

12.
 对宽厚不锈钢复合板层间真空热轧制变形过程进行受力分析,将热轧变形区分成I、II两个区间,运用主应力法建立各个区间的力平衡方程,根据边界条件和屈服准则求出各变形区的长度和各变形区所受压力,建立轧制力计算数学模型,在此基础上分析轧制工艺参数对宽厚不锈钢复合板轧制区间内不同应力分布的影响规律。将实际参数代入轧制模型计算公式,应用Matlab编程求得理论计算值,并与实测值进行比较。研究结果表明:轧制力模型可用于预测轧制力的大小,满足工程要求,轧制复合过程研究有助于优化成形工艺、预测产品性能,为今后此类材料的研究开发提供了参考依据。  相似文献   

13.
为了有效预测双机架炉卷轧机的轧制力,使热轧板带材生产具有很好的可操作性,采用粒子群算法(PSO)优化BP神经网络,建立了往复式双机架炉卷轧机轧制力预测的智能模型。以某钢厂热轧产品Q195实测数据作为试验样本,并将粒子群算法优化的BP神经网络模型和标准BP网络模型分别用于轧制力预测,结果表明PSO-BP神经网络模型在预报精度上明显优于标准BP网络模型,并且PSO-BP神经网络模型预测轧制力的误差率控制在10%以内。  相似文献   

14.
变形抗力作为冷轧工艺设定中重要的材料和控制参数,计算精度直接影响到轧制力设定精度,继而影响带钢平坦度等质量指标的控制精度。针对变形抗力机制模型设定精度低、无法考虑热轧过程参数遗传影响等问题,采用鲸鱼优化算法(WOA)优化BP神经网络建立预测模型(WOA-BP),并通过现场收集的热、冷轧历史过程工艺参数对模型进行训练。WOA-BP模型预测结果表明,平均绝对值误差为10.42,平均绝对百分比误差为1.22,平均均方根误差为13.13,均优于BP神经网络模型,弥补了BP神经网络处理复杂的非线性问题训练时间长、预测精度低等缺点。与传统依托冷轧单工序建立的机制模型相比,考虑热轧工艺参数后,变形抗力预测误差由±15%降低至±6%,应用于L2级系统模型设定后,轧制力精度平均提高了2.09%。  相似文献   

15.
基于GRNN神经网络的4200轧机宽展模型   总被引:1,自引:0,他引:1  
 轧制过程中,针对4200轧机在轧件宽展变化自动预测和控制,分析了轧制过程中宽展变化的影响因素。在神经网络技术和现场实测数据的基础上,利用Matlab人工神经网络工具箱,应用GRNN广义回归神经网络建立宽展变化预测模型来提高轧制宽展变化预测的精度。结果表明,该方法建立的模型可以实现对宽展变化的预测,其预测精度有较大提高。  相似文献   

16.
为了进一步提高热连轧精轧机组轧制力的设定精度,采用小波神经网络建立轧制力预报模型。并采用改进的快速BP算法来训练网络。仿真结果表明:建立的轧制力预报模型的预报值与实际值之间的相对误差在±6%以内,且学习算法收敛速度快。  相似文献   

17.
羌菊兴  凌鹰鹤  舒萦 《宝钢技术》2010,(2):54-57,69
建立一套可靠的离线模型调试工具,为实际生产提供技术依据十分重要。依据冷连轧轧制力模型公式、辊缝模型公式、轧辊压扁半径计算模型等公式,在EXCEL下建立了各个模型之间的关系。通过先调整变形抗力参数,再调整摩擦因数可以使轧制力自适应系数达到1;通过采集实际的轧制力,用实际轧制力公式反推摩擦因数,达到调整模型参数的目的。  相似文献   

18.
为了提高热轧生产过程精轧机组的轧制力预设定精度,需要对轧制力进行高精度的预报.本文通过机理公式计算出轧制力的近似值,然后采集大量的实际生产数据修正轧制力预报值.首先利用聚类方法区分不同的生产状态,其次在相同生产状态下采用加权最小二乘支持向量机计算轧制力的修正系数,最后采用乘法方式修正轧制力,达到高精度的轧制力预测.结果表明,轧制力预报的平均相对误差为3.2%,满足现场的生产要求.   相似文献   

19.
针对广泛应用的Bland-Ford-Hill冷轧轧制力工艺模型,通过挖掘现场实际数据隐含的规律,对其变形抗力和摩擦因数的模型参数进行优化,以提高轧制力计算精度。首先,推导由轧制力计算变形抗力和摩擦因数的逆计算算法,采用L-M非线性多项式回归方法对变形抗力和摩擦因数的模型参数进行优化回归计算,建立轧制力优化算法;然后,根据现场海量的实际数据,采用数据挖掘的方法,使用上述优化方法计算更加符合现场实际的变形抗力和摩擦因数的模型参数。优化结果在线运行后,轧制力精度明显提高。  相似文献   

20.
由于带钢热轧过程中跑偏的影响因素复杂,传统的机理预测模型难以保证跑偏预测的准确性。本文从数据驱动的角度出发,结合带钢轧制过程跑偏产生原理和实际生产数据,提出了一种基于主成分分析(PCA)与BP神经网络的组合模型用于预测带钢跑偏。该模型精度较高,对提高热连轧成品质量和轧制设备的寿命都具有重大意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号