首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objective of the present work was to investigate the dynamic recrystallization phenomenon of a new Al-2.8Cu-1.4Li alloy. Isothermal compression experiments were carried out at a temperature of 643 K to 723 K (370 °C to 450 °C), strain rate of 0.001 to 1 s−1, and deformation degree of 20 to 50 pct to determine material parameters for empirical models. Different holding times from 10 to 30 minutes were set to obtain the effect of initial grain size on microstructural evolution. Based on the results of stress-strain curves and metallographic analysis, the constitutive model and dynamic recrystallization mathematical model of Al-2.8Cu-1.4Li alloy were derived. The coupled thermomechanical finite element method integrated with the dynamic recrystallization model was used to simulate the change of microstructure during hot upsetting. Good agreement between the predicted results and experimental results was obtained, which demonstrated that the dynamic recrystallization model can be successfully used to predict microstructural evolution during hot working for Al-2.8Cu-1.4Li alloy.  相似文献   

2.

A combination of experimental and analytical methods was used to study the possible occurrence of liquation during LFW of the newly developed AD730TM Ni-based superalloy. LFWed joints were produced using a semi-industrial size facility and the interfaces of the joints as well as the ejected flash were examined using optical and Field Emission Gun Scanning Electron Microscopy (FEG-SEM). Physical simulation of the LFW thermal cycle, using thermomechanical simulator Gleeble™ 3800, showed that incipient melting started from 1473 K (1200 °C). The analytical model, calibrated by experiments, predicted that the highest temperature of the interface was about 1523 K (1250 °C). The constitutive equations based on lattice and pipe diffusion models were developed to quantify the self-diffusivity of the elements and control the extent of liquation by considering the effect of LFW process parameters. Analytical results show that the application of compressive stresses during LFW results in 25 times increase in the diffusion of Ni atoms at the weld interface. Therefore, no presence of re-solidified phases, i.e., occurrence of liquation, was observed in the microstructure of the weld zone or the flash in the present study. Based on the obtained results, a methodology was developed for designing the optimum pressure above which no liquation, and hence cracking, will be observable.

  相似文献   

3.
《粉末冶金学》2013,56(4):342-348
Abstract

In this study, a novel type of rotating disc unit was designed and constructed and was used to produce rapidly solidified AA2014 alloy powders. Copper and stainless steel were used as the disc material and the temperature of the cooling water was selected as 0°C and 18°C. Effects of the production parameters, such as disc material, cooling water temperature, superheat of liquid metal and disc speed on the microstructure and the cooling rate of the powders, have been investigated.

The microstructure of the produced powders was cellular and changed to cellular-dendritic with increasing powder size. It was found that cooling rates were relatively higher using a copper disc and 0°C cooling water temperature. The results indicated that cooling rates of 25 μm powders produced with a copper disc were estimated as 1·01×106 K s-1 and 9·02×105 K s-1 for 0°C and 18°C cooling water temperatures respectively. Decreasing the superheat of the liquid metal and increasing disc rotating speed also increased the cooling rates. PM/1050  相似文献   

4.
Wang  X. F.  Guo  M. X.  Chen  Y.  Zhu  J.  Zhang  J. S.  Zhuang  L. Z. 《Metallurgical and Materials Transactions A》2017,48(7):3540-3558

The effect of thermomechanical processing on microstructure, texture evolution, and mechanical properties of Al-Mg-Si-Cu alloys with different Zn contents was studied by mechanical properties, microstructure, and texture characterization in the present study. The results show that thermomechanical processing has a significant influence on the evolution of microstructure and texture and on the final mechanical properties, independently of Zn contents. Compared with the T4P-treated (first preaged at 353 K (80 °C) for 12 hours and then naturally aged for 14 days) sheets with high final cold rolling reduction, the T4P-treated sheets with low final cold rolling reduction possess almost identical strength and elongation and higher average r values. Compared with the intermediate annealed sheets with high final cold rolling reduction, the intermediate annealed sheets with low final cold rolling reduction contain a higher number of particles with a smaller size. After solution treatment, in contrast to the sheets with high final cold rolling reduction, the sheets with low final cold rolling reduction possess finer grain structure and tend to form a weaker recrystallization texture. The recrystallization texture may be affected by particle distribution, grain size, and final cold rolling texture. Finally, the visco-plastic self-consistent (VPSC) model was used to predict r values.

  相似文献   

5.
Deformation Mechanisms in the Near-β Titanium Alloy Ti-55531   总被引:1,自引:0,他引:1  
The hot formability of a near-β titanium alloy is studied near the β transus temperature to determine the mechanisms of deformation. Compression tests of Ti-5Al-5Mo-5V-3Cr-1Zr are carried out using a Gleeble®1500 device between 1036 K and 1116 K (763 °C and 843 °C) and strain rates between 0.001 and 10 s?1. The achieved flow data are used to calculate the efficiency of power dissipation, the strain rate sensitivity, and instability parameters derived from different models. Constitutive equations are built using the stress values at the strain of 0.4. Light optical microscopy and EBSD measurements are used to correlate the parameters that describe formability with the microstructure. It is found that hot deformation is achieved by dynamic recovery in the β phase by subgrain formation. Geometric dynamic recrystallization along the β grain boundaries takes place at large deformations, high temperatures, and low strain rates. On the other hand, for high strain rates, continuous dynamic recrystallization by lattice rotation already starts at a local strain of 1. Different phenomenological models are used to predict the flow instabilities, where the flow-softening parameter α i provides the best correlation with microstructure as well as the physical understanding. The instabilities observed in this alloy are strongly related to flow localization by adiabatic heat.  相似文献   

6.
The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.  相似文献   

7.

Two- and three-dimensional pore evolutions along with nitrogen diffusion behavior in nuclear graphite were studied using thermogravimetric analysis, X-ray computed tomography, scanning electron microscopy, and the Brunauer-Emmett-Teller method. Calculated nitrogen diffusion activation energy was approximately 2.5 kJ·mol−1. Stable weight loss of graphite specimens increased with temperature, primarily due to more escaped nitrogen from the graphite matrix. Fewer nano-pores and more micro-pores were formed because of the nano-pore coalescence. At 873 K (600 °C), graphite microstructure evolution might be induced by temperature and mild oxidation. Before being placed into high temperature gas-cooled reactors (HTGRs), porous nuclear graphite should be subjected to vacuum at 573 K to 673 K (300 °C to 400 °C) to minimize 14N in the pores and 14C generated during operation of HTGRs.

  相似文献   

8.
Deformation behavior of hot-rolled AISI 304 LN austenitic stainless steel was studied by hot axisymmetric compression tests at 1173 K, 1273 K, and 1373 K (900 °C, 1000 °C, and 1100 °C) at strain rates of 0.01, 0.1, and 1 s?1. The flow curves were examined to understand the deformation characteristics. The influence of Zener–Holloman parameter was analyzed using appropriate constitutive models. The activation energy for deformation was found to be 473 kJ/mol. Quantitative microstructural analysis was carried out using Electron backscattered diffraction. Compression at 1173 K (900 °C) at all true strain rates gave rise to partially dynamic recrystallized microstructure with strong α-fiber texture. The deformation texture is characterized by the formation of Brass component, and partial dynamic recrystallization (DRX) led to the development of Goss, S, and ube components. Necklace structure of small equiaxed recrystallized grains could be observed surrounding the large, elongated deformed grains. Compressions at 1273 K and 1373 K (1000 °C and 1100 °C) resulted in fully recrystallized microstructure consisting of mostly Σ3 and Σ9 coincidence site lattice high-angle boundaries. Compression at 1273 K (1000 °C) leads to the formation of low-intensity diffused α-fiber. DRX was confirmed by the presence of Goss, S, Cube, and rotated Cube components. Compression performed at 1373 K (1100 °C) resulted in nearly random texture with traces of α-fiber and prominent Cube/rotated Cube components. The microstructures of the 1173 K (900 °C)-compressed samples were partitioned using grain size and misorientation criteria to quantify DRX.  相似文献   

9.
A 5083 Al alloy was synthesized using spray deposition processing with N2 as the atomization gas. It was noted that the grains that were present in as-spray-deposited 5083 Al were equiaxed with an average size of 15.2 μm. The matrix of the material was supersaturated with Mg and Mn. The asspray-deposited microstructure contained irregular pores with porosity in the range of 0.1 to 5.4 vol pct, depending on spatial location in the preform. The spray-deposited alloy was thermomechanically processed using extrusion and multiple-pass warm rolling to reduce grain size and close porosity. It was observed that spray-deposited 5083 Al exhibited superplasticity following thermomechanical processing by extrusion followed by rolling. Superplasticity was observed in the 500 °C to 550 °C temperature range and 3 × 10−5 to 3 × 10−3 s−1 strain rate range. The corresponding strain-rate-sensitivity factors were in the 0.25 to 0.5 range and increased with decreasing strain rate. A maximum elongation of 465 pct was noted at 550 °C and 3 × 10−5 s−1. The spray-deposited 5083 Al, thermomechanically processed by direct rolling, exhibited superplasticity in the same temperature and strain rate ranges as those for the extruded and rolled materials. The superplastic elongation of the spray-formed and rolled material was relatively low, being in the range of 250 to 300 pct. The deformation behavior is discussed in light of the presence of porosity in the microstructure.  相似文献   

10.
The mechanical behavior of a new single-crystal nickel-based superalloy for industrial gas turbine (IGT) applications is studied under creep and out-of-phase (OP) thermomechanical fatigue (TMF) conditions. Neutron diffraction methods and thermodynamic modeling are used to quantify the variation of the gamma prime (?á?) strengthening phase around the ?á? solvus temperature; these aid the design of primary aging heat treatments to develop either uniform or bimodal microstructures of the ?á? phase. Under creep conditions in the temperature range 1023?K to 1123?K (750?°C to 850?°C), with stresses between 235 to 520?MPa, the creep performance is best with a finer and uniform ?á? microstructure. On the other hand, the OP TMF performance improves when the ?á? precipitate size is larger. Thus, the micromechanical degradation mechanisms occurring during creep and TMF are distinct. During TMF, localized shear banding occurs with the ?á? phase penetrated by dislocations; however, during creep, the dislocation activity is restricted to the matrix phase. The factors controlling TMF resistance are rationalized.  相似文献   

11.
《粉末冶金学》2013,56(33):46-69
Abstract

A study has been made of extrusion-consolidation processing variables for the production of sound material from spherical 7075 aluminium alloy powder (median particle size 132 μm) canned in evacuated cylinders at ~60% initial density. Maximum product integrity and tensile properties were obtained by extrusion at 644K (700°F)–700K (800°F) and 6:1–10:1 reduction ratio. At lower reduction ratios (2:1 and 3:1) the product exhibited gross cracking and was not completely dense. At a reduction ratio of 40:1, it had significantly poorer tensile properties, attributable to the formation, during extrusion and heat-treatment, of longitudinal cracks at the particle boundaries and to the microstructure produced within the particle grains by the thermomechanical conditions. In general, processing behaviour and product properties were either inferior to or, in some cases, equal to those of wrought material extruded for comparison under the same conditions. Inferior behaviour of the metal powder during processing and tensile testing results from the presence of a brittle oxide film on the surfaces of the particles. Suggestions for improving the processing behaviour of the metal powder and the properties of the extruded product are made.  相似文献   

12.

Transformation kinetics and phase equilibrium of metastable and stable precipitates in age-hardenable Cu-4 at. pct Ti binary alloy have been investigated by monitoring the microstructural evolution during isothermal aging at temperatures between 693 K (420 °C) and 973 K (700 °C). The microstructure of the supersaturated solid solution evolves in four stages: compositional modulation due to spinodal decomposition, continuous precipitation of the needle-shaped metastable β′-Cu4Ti with a tetragonal structure, discontinuous precipitation of cellular components containing stable β-Cu4Ti lamellae with an orthorhombic structure, and eventually precipitation saturation at equilibrium. In specimens aged below 923 K (650 °C), the stable β-Cu4Ti phase is produced only due to the cellular reaction, whereas it can be also directly obtained from the intergranular needle-shaped β′-Cu4Ti precipitates in specimens aged at 973 K (700 °C). The precipitation kinetics and phase equilibrium observed for the specimens aged between 693 K (420 °C) and 973 K (700 °C) were characterized in accordance with a time–temperature–transformation (TTT) diagram and a Cu-Ti partial phase diagram, which were utilized to determine the alloy microstructure, strength, and electrical conductivity.

  相似文献   

13.
The γ′ precipitation behavior of age-hardened WASPALOY, aged at 998 K, 1073 K, and 1148 K (725 °C, 800 °C, and 875 °C) for times ranging from 0.5 to 263.5 hours, were evaluated via analysis of ultra small angle X-ray scattering (USAXS) curves and scanning electron microscopy (SEM) micrographs. The USAXS spectra revealed a single precipitate size distribution at the earliest aging times, which evolves into a bimodal precipitate size distribution at later aging times. The primary precipitate radius displayed t 1/3 coarsening dependence for aging at 1073 K and 1148 K (800 °C and 875 °C); however, the primary radius increased with t 0.4 dependence at 998 K (725 °C), most likely due to mixed growth and coarsening. A figure of merit, η′, consisting of two terms, one associated with precipitate size and volume fraction and the other with compositional fluctuations, was proposed. η′ shows direct empirical correlations with changes in the measured electrical resistivity.  相似文献   

14.

Recently, cobalt-based γ-γ microstructured superalloys have attracted attention. However, studies on their processing behavior [i.e., processing maps (the variation of strain rate sensitivity (m) with temperature)] are limited. Thus, the high-temperature flow behavior of a γ-γ′ Co-30Ni-10Al-5Mo-2Ta-2Ti-5Cr (at. pct) superalloy was investigated using isothermal compression tests between 1348 and 1498 K at strain rates from 0.001 to 10 s−1. The m contour map was generated using the experimental flow stress values, which were used to locate the optimum hot workability and desired microstructural processing range. A strong dependence of m on the deformation parameters (temperature, strain rate, and strain) was observed. A maximum m value of around 0.3 at 1460 K to 1498 K and strain rates of 0.01 to 0.5 s−1 was found. The deformed samples show a fully recrystallized microstructure at high m. Unstable domains showed the formation of cavities at the grain boundary triple points and cracks along the grain boundaries at high strain rates (1 to 10 s−1), corresponding to m < 0.10. A constitutive model was developed using an Arrhenius hyperbolic sine function, yielding an apparent activation energy of 540 ± 30 kJ mol−1 for hot deformation. This study indicates reasonable formability under certain conditions below the solvus, thus opening possibilities for further thermomechanical treatment.

  相似文献   

15.
16.
Aberration-corrected scanning transmission electron microscopy (AC-STEM), X-ray diffraction (XRD), electron backscatter diffraction, and electron probe microanalysis were applied to characterize continuous and discontinuous phase formation in precious metal alloys used in electrical contacts. The Pd-rich Paliney® (®Paliney is tradename of Deringer-Ney Inc., Bloomfield, CT) alloys contain Pd, Ag, Cu, Au, Pt (and Zn or Ni). With aging at 755 K (482 °C), nanometer-scale chemistry modulation was observed indicating spinodal decomposition. An ordered body-centered tetragonal (bct) structure was also observed with AC-STEM after the 755 K (482 °C) aging treatment and another phase, tentatively identified as β-Cu3Pd4Zn, was found by microscopy and XRD after prolonged holds at higher temperatures. During slow cooling or isothermal holds at high temperature [755 K to 973 K (482 °C to 700 °C)], a two-phase lamellar structure develops along grain boundaries by discontinuous precipitation. XRD and AC-STEM showed that the lamellar structure was comprised of Ag-rich and Cu-rich fcc phases (α 1 and α 2). The phases are discussed in relation to a pseudo-ternary diagram based on Ag-Cu-Pd, which provides a simplified representation of the discontinuous phase compositions in the multi-component alloy system.  相似文献   

17.
The cyclic deformation and fatigue behavior of the γ-TiAl alloy TNB-V5 is evaluated under thermomechanical load for three different microstructures. For this purpose, strain-controlled thermomechanical fatigue (TMF) tests were carried out with different temperature-strain cycles, different temperature ranges from 400 °C to 800 °C (673 K to 1073 K), and with two different strain ranges to set a fatigue-life relation. Cyclic deformation curves, stress-strain hysteresis loops, and fatigue lives of the tests are presented. The microstructures near-gamma (NG) and duplex (DP) show comparable fatigue lives under all test parameters. The microstructure fully-lamellar (FL) offers longer fatigue lives at the same loading conditions. For a general life prediction, the damage parameter of Smith, Watson, and Topper, P SWT vs fatigue life, is well suitable, if the testing and the application temperature ranges, respectively, include temperatures above the ductile-brittle transition (approximately 750 °C). In the completely brittle material behavior regime the quality of the lifetime prediction is unacceptable. The damage parameter P HL by Haibach and Lehrke shows a comparable correlation to the fatigue life as P SWT. The results are discussed with microstructural investigations.  相似文献   

18.
Plastic flow behavior and globularization kinetics during subtransus hot working were determined for Ti-6Al-4V with three different transformed beta microstructures. These conditions consisted of fine lamellar colonies, a mixture of coarse colonies and acicular alpha, and acicular alpha. Isothermal hot compression tests were performed on cylindrical samples at subtransus temperatures and strain rates typical of ingot breakdown (i.e., T∼815 °C to 955 °C, ∼0.1 s−1). For all three material conditions, true stress-true strain curves exhibited a peak stress followed by noticeable flow softening; the values of peak stress and flow softening rate showed little dependence on starting microstructure. On the other hand, the kinetics of dynamic globularization varied noticeably with microstructure. By and large, the globularization rate under a given set of deformation conditions was most rapid for the fine acicular microstructure and least rapid for the mixed coarse-colony/acicular structure. At temperatures close to the beta transus, however, the difference in globularization rates for the three microstructures was less, an effect attributed to the rapid (continuous) coarsening of the laths in the acicular microstructure during preheating prior to hot working. The absence of a correlation between the globularization kinetics and the observed flow softening at low strains suggested platelet/lath bending and kinking as the primary deformation mechanism that controls the shape of the flow curves.  相似文献   

19.
Stress relaxation measurements in commercially pure α-Ti (A-55) were performed at a plastic strain of 2×10?3 in the temperature range 300° to 500°K. The long range component of the flow stress (τinternal) was measured as a function of temperature over the entire range studied. Contrary to the normal assumption of its temperature independence, this parameter was observed to increase approximately 80 pct as the temperature declined from 500° to 300°K. Measurements of the temperature and strain rate dependence of the effective stress (τ*) indicated that two distinct thermally activated dislocation motion processes control this mode of deformation in the temperature range studied. A low temperature process governs dislocation motion below 380°K and is characterized byH*→0)=0.3 ev. The high temperature process controls plastic flow above 400°K and is characterized byH*→0)?1.1 ev. The preexponential factor appearing in the Arrhenius equation \((\dot \gamma _0 )\) was also determined for both processes and found to be a sensitive function of the effective stress. Activation volume (ν*): effective stress relationships for both processes were also obtained. The experimental findings quoted above will be discussed in terms of our current understanding of thermodynamics of plastic deformation and hypotheses will be introduced to account for the observed large variations of τinternal with temperature and \(\dot \gamma _0 \) with τ*. Mechanistic suggestions for both high and low temperature processes will also be offered.  相似文献   

20.
The effect of cooling conditions, giving estimated cooling rates in the range 104 °C per second to 107 °C per second, on the microstructure of Ti-6Al-4V has been evaluated. The microstructures of as-solidified particulates were martensitic, with the martensite lath length decreasing with beta grain size,L, which in turn decreased with increasing cooling rate. For material alpha + beta heat-treated or vacuum hot pressed, the alpha morphology was dependent on the prior cooling rate. For materials cooled at <5 × 105 °C per second martensite transformed to lenticular alpha, while material cooled at >5 × 105 °C per second developed an equiaxed alpha morphology. This change in morphology was explained in terms of high dislocation density or grain size refinement, both of which result from the high cooling rate. When the beta grain size (L) was plottedvs section thickness (z), and estimated cooling rate (T), power law relationships analogous to those reported for secondary dendrite arm spacing were found:L = 1.3 ± 0.4z089±006 (thin, chill-substrate quenched),L = 0.17 ± 0.05z0.86±0.01(thick, convection-cooled material), andL = 3.1 × 106 T−0.93±0.12 (all material), whereL and z are in μm andT is in K/s. The last relationship is in agreement with the 0.9 exponent predicted using a model developed for the effect of grain size on cooling rate assuming classical homogeneous nucleation and isotropic linear growth during solidification. The first two relationships were rationalized by assuming that the two materials cooled under near-Newtonian conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号