首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
利用激光分子束外延异质外延 BaTiO3 薄膜。通过反射式高能电子衍射对薄膜生长进行原位监测,利用原子力显微镜分析薄膜表面形貌,发现在沉积速率为 0.016nm/s,激光功率为 6J/cm2 的条件下,当基片加热温度高于 480℃时,BaTiO3 薄膜以层状生长模式进行生长;而当温度在 430~480℃之间时,薄膜生长为SK模式,即层状加岛状的混合生长模式。进一步降低基片加热温度,在 430℃以下观察到了三维岛状生长模式。通过优化激光功率和沉积速率等工艺参数,得到了层状生长 BaTiO3 薄膜的最低结晶温度为330℃。根据实验结果分析了激光功率对薄膜生长温度的影响。同时结合 X 射线衍射分析在不同的生长条件下,研究温度对薄膜异质外延生长的影响,发现在较高的生长温度下,在 BaTiO3 薄膜生长过程中,位错产生的几率较小,薄膜的外延性好,而在较低的生长温度下,薄膜内部位错较多,异质外延性不佳。  相似文献   

2.
本文采用VHF-PECVD技术制备了两个不同硅烷浓度(SC)系列的微晶硅薄膜,通过椭圆偏振技术研究了微晶硅薄膜的微结构和表面粗糙度随沉积时间的变化。实验结果表明:随着薄膜厚度的增加,两个系列硅薄膜的晶化度增加,当薄膜增加到一定厚度时内部开始出现微空洞,这是由于随着薄膜厚度的增加,薄膜晶化度增加,晶粒增大,大晶粒边界之间更容易形成空洞。硅薄膜的表面粗糙层厚度ds与薄膜厚度d满足指数关系:ds~dβ,β为生长指数,与薄膜生长机制有关,当硅烷浓度SC为4%时,β=0.33,对应有限扩散生长模式。硅烷浓度SC为5%时,β=0.52,对应为零扩散随机生长模式。硅烷浓度降低,生长指数β减小,这是由于随着硅烷浓度的降低,氢原子浓度增加,薄膜表面氢覆盖扩大,从而有利于反应前驱物的扩散,因此薄膜表面更为光滑,生长指数β减小。  相似文献   

3.
采用石英晶体微天平实时监测薄膜生长速率,通过控制衬底温度与薄膜生长速率,在柔性ITO导电衬底上真空蒸发沉积了铜酞菁薄膜.X射线衍射分析表明,适当提高衬底温度与薄膜生长速率,可促进薄膜的有序生长.当衬底温度为90℃,生长速率为10nm/min时,薄膜的有序度最高,薄膜晶型呈(相和(200)晶面.  相似文献   

4.
利用Gd/Ce镶嵌复合靶、采用反应射频磁控溅射技术制备了Gd2O3掺杂CeO2(GDC)氧离子导体电解质薄膜,重点探讨了基片温度对薄膜物相结构、沉积速率及生长形貌的影响.分析结果表明,不同温度下制备的薄膜中,立方面心结构GDC固溶体相占主导,同时存在少量体心立方结构Gd2O3中间相;GDC薄膜的生长取向随基片温度而变化,200℃时,无择优取向,500℃时薄膜呈现(220)织构,700℃则为(111)择优取向;薄膜沉积速率随基片温度呈阶段性规律变化,(220)方向择优生长越显著,沉积速率越高,薄膜粗糙度越大;AFM分析表明,薄膜为岛状生长,随温度升高,表面生长岛尺寸增大,岛密度变小.  相似文献   

5.
CdS薄膜的SILAR法制备与表征   总被引:1,自引:0,他引:1  
采用液相薄膜制备工艺-SILAR(连续离子层吸附反应)法,在室温下于玻璃衬底上制备了CdS薄膜.对薄膜的表面形貌,薄膜的生长速率以及热处理与薄膜的成相及其电阻率的关系进行了观察和分析.实验结果表明:薄膜表面较致密,生长速率为2nm/cycle,随循环次数的增加,沉积粒子的尺寸趋于增大.室温下沉积的CdS薄膜为非晶态,经热处理后薄膜的结晶度提高,电阻率显著下降.此外,文章结合实验对薄膜的生长机理进行了初步的讨论.  相似文献   

6.
利用直流脉冲磁控溅射方法在不同O2/Ar比例条件下制备具有不同结构、性能的TiO2薄膜,利用台阶仪、X射线衍射仪及紫外-可见分光光度计等仪器,对薄膜的结构、透光性能、光催化性能等进行表征。研究结果表明:TiO2薄膜的结构、光催化性能等强烈依赖于沉积过程中的O2/Ar比例。在低O2/Ar比例条件下制备的TiO2薄膜,薄膜处于O控制生长阶段,相应薄膜处于高速生长状态,薄膜经退火处理后形成锐钛矿(101)相择优取向结构,同时薄膜对甲基橙溶液降解率较低。随着O2/Ar比例的增加,薄膜生长速率逐渐降低,薄膜逐渐呈现多相混合生长,经退火处理后薄膜呈现锐钛矿(101)相与(004)相的混合相结构,相应薄膜对甲基橙溶液降解率增加,在O2/Ar比为6/14时,其对甲基橙溶液降解率达到最大值,为86.45%。继续增加O2/Ar比例,在高O2/Ar比例条件下,薄膜沉积速率较低,沉积离子有充足的驰豫时间释放自身能量以寻找低能位置,因此在薄膜沉积过程中主要形成能量最低的锐钛矿(101)相结构,经退火处理后薄膜呈现锐钛矿(101)相择优取向结构,在O2/Ar比为20/0时,薄膜对甲基橙溶液降解率下降至52.15%。  相似文献   

7.
利用蒙特卡罗(Monte Carlo)方法模拟了Cu薄膜在四方基底上的三维生长过程。模型中考虑了三个主要的原子热运动过程:原子沉积、原子扩散、原子脱附,各过程发生的概率是由各运动的速率来决定的。讨论了基底温度、沉积速率及原子覆盖度对Cu薄膜的表面形貌及表面粗糙度的影响。模拟结果表明:随基底温度升高或沉积速率下降,岛的平均尺寸增大,数目减少,薄膜以层状生长方式生长;Cu薄膜表面粗糙度随温度的升高而减小,当基底温度处于某一临界温度之内时,表面粗糙度随沉积速率的变化很大,但当基底温度超过临界温度时,表面粗糙度随沉积速率的变化很小;薄膜的粗糙度与薄膜亚单层的形核密切相关。  相似文献   

8.
提高生长速率是降低金刚石薄膜应用成本的关键因素之一,目前研究的提高速率的方法中以偏压电子增强为主,而该方法不适宜表面复杂的刀具涂层。本文通过在无偏压热丝化学气相沉积沉积金刚石薄膜条件下添加少量的Ar,成功将生长速率提高3倍,并采用等离子发射光谱研究了其反应机制,尤其对反应系统电子温度的变化做出了详细推理分析。实验结果采用扫描电镜、Raman光谱进行表征。结果表明:氩气的添加不仅可促进二次成核,使得晶粒尺寸达到纳米级,而且一定量的氩气(8%~32%)可提高金刚石薄膜的生长速率,当氩气含量在8%~32%范围内时,金刚石薄膜的生长速率随氩气浓度增大而增大,本实验获得最高生长速率达3.75μm/h,是无Ar情况下的3倍。光谱诊断显示的主要基团为CO(283~370nm),CH(387.0 nm),H_β(486 nm),H_α(656.3 nm),氩气添加后这些基团的光谱强度均显著增强。当氩气含量为7%~30%时,电子温度与氩气浓度成正比,为金刚石薄膜的生长提供了更优越的条件,生长速率得到提高。  相似文献   

9.
采用场发射扫描电镜和X射线衍射技术研究了生长结束后的降温过程对以近空间升华法生长的CdZnTe薄膜形貌与结构的影响。分析了快速(炉冷,673K以上-8K/min)和慢速(-2K/min)两种降温速率下获得的CdZnTe薄膜的结构与形貌,并考察了降温中是否阻断生长源向薄膜的传质的影响。结果表明,所得到的薄膜均为闪锌矿结构,降温时薄膜的持续生长将抑制晶粒在平面内铺展而使其棱角钝化的趋势,以较慢的速率降温和降温时阻断传质均有利于提高薄膜的致密度,降低粗糙度及薄膜的织构强度。  相似文献   

10.
以SiCl4和H2为气源,用等离子体增强化学气相沉积技术,在300℃的低温下,研究不同的氢流量对纳米晶硅薄膜生长特性的影响.实验发现,氢对薄膜生长特性的影响有异于SiH4/H2,在一定功率下,薄膜的晶化率随氢流量的减小而增加;而薄膜的生长速率也强烈依赖于氢流量,随氢流量的减小而增大,与氢流量对薄膜晶化度的变化关系一致.通过调控氢流量,在低氢流量条件下获得了生长速率高达0.35nm/s,晶化度高达76%的晶化硅薄膜.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号