首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plomp's speech reception threshold (SRT) model [R. Plomp, J. Acoust. Soc. Am. 63, 533-549 (1978)] incorporates a distortion and an attenuation factor that are both expressed in dB and, for hearing-impaired listeners, are greater than 0 dB. The distortion factor is hypothesized to affect the SRT in quiet and in noise and suggests that a hearing-impaired listener will always demonstrate a higher SRT than a normal-hearing listener. The present study examines whether this distortion factor can be explained for many listeners simply by inaudibility of a portion of the speech spectrum. SRTs were obtained from normal-hearing and mild-to-moderately hearing-impaired listeners in quiet and at various noise levels. The results indicate that, at high noise levels, when the noise, rather than the quiet threshold, becomes the dominating factor, the SRT functions of both the normal and the mild-to-moderately hearing-impaired group converge and the distortion factor diminishes to zero. Predictions were also made using an articulation index and similar convergence of the two functions was observed.  相似文献   

2.
The contribution of reduced speaking rate to the intelligibility of "clear" speech (Picheny, Durlach, & Braida, 1985) was evaluated by adjusting the durations of speech segments (a) via nonuniform signal time-scaling, (b) by deleting and inserting pauses, and (c) by eliciting materials from a professional speaker at a wide range of speaking rates. Key words in clearly spoken nonsense sentences were substantially more intelligible than those spoken conversationally (15 points) when presented in quiet for listeners with sensorineural impairments and when presented in a noise background to listeners with normal hearing. Repeated presentation of conversational materials also improved scores (6 points). However, degradations introduced by segment-by-segment time-scaling rendered this time-scaling technique problematic as a means of converting speaking styles. Scores for key words excised from these materials and presented in isolation generally exhibited the same trends as in sentence contexts. Manipulation of pause structure reduced scores both when additional pauses were introduced into conversational sentences and when pauses were deleted from clear sentences. Key-word scores for materials produced by a professional talker were inversely correlated with speaking rate, but conversational rate scores did not approach those of clear speech for other talkers. In all experiments, listeners with normal hearing exposed to flat-spectrum background noise performed similarly to listeners with hearing loss.  相似文献   

3.
HINT list equivalency was examined using 24 listeners between 60 and 70 years old who had sensorineural hearing impairment. A Greco-Latin square design was used to ensure that each list was presented an equal number of times per condition. Four conditions were tested: (1) speech in quiet, (2) speech in 65 dBA noise with noise at 0 degrees azimuth, (3) speech in 65 dBA noise with noise at 90 degrees azimuth, and (4) speech in 65 dBA noise with noise at 270 degrees azimuth. Speech materials were always presented at 0 degrees azimuth. Overall mean scores ranged from 29.9 dBA for the quiet condition to 63.4 dBA for the noise at 0 degrees azimuth condition. A significant difference was found between Lists 13 and 16 only. This was attributed to audibility differences among the listeners. Therefore, the 25 HINT lists should be considered equivalent for older populations with similar hearing impairment. The HINT lists can be used for relative measures, such as comparison of aided versus unaided sentence SRTs or comparison of 2 different hearing aids.  相似文献   

4.
The detection of signals in noise is important for understanding both the mechanisms of hearing and how the auditory system functions under more natural conditions. In humans, the auditory system gains some improvement if the signal and noise are separated in space (binaural masking release). Birds with small heads are at a disadvantage in separating noise and signal sources relative to large mammals, because interaural time differences are much smaller. Two binaural phenomena in budgerigars related to the detection of tones in noise were examined. Budgerigars show 8 dB of free-field binaural masking release when signal and noise are presented to their right side and correlated noise is presented to their left side. Budgerigars also show a spatial masking release of 9 dB when a signal and noise are separated in azimuth by 90°. These results are similar to those found in humans and other mammals with much larger heads. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
OBJECTIVE: The study was designed to assess the effects of background noise level on the detection and localization of speech. DESIGN: The phrase "Where is this?" was presented either in quiet or in a diffuse noise field, through loudspeakers arranged in a 360 degrees azimuth array. The noise conditions included 11 signal to noise ratios (SNRs) ranging from -18 dB SNR to +12 dB SNR in 3 dB increments. Seventeen normal-hearing subjects, aged 18 to 29, participated in the study. RESULTS: Results revealed that in all listening conditions the signal was most easily detected when presented through a loudspeaker positioned at 90 degrees or 270 degrees azimuth. Although the actual level for 50% detection varied as a function of loudspeaker location and SNR, 85% and 100% of all presentations of the signal were detected at -9 dB and -6 dB SNR, respectively. Localization accuracy improved as the SNR increased, ranging from 18% accuracy at -18 dB SNR to 89% at +12 dB SNR. Localization accuracy in quiet was 95%. The data are discussed in reference to patterns of responses at each loudspeaker location. CONCLUSIONS: Detection of the target signal deteriorated as background noise level increased and was dependent on the source location of the incoming signal, as expected. Localization accuracy of the target signal was highly dependent on the SNR and spatial location of the signal source. Detection and localization accuracy data were found to be repeatable across test sessions and response patterns were found to be symmetrical on the right and left sides of the horizontal plane.  相似文献   

6.
1. We have shown previously that under free-field stimulation in the frontal field, frequency selectivity of the majority of inferior colliculus (IC) neurons became sharper when the loudspeaker was shifted to ipsilateral azimuths. These results indicated that binaural inhibition may be responsible for the direction-dependent sharpening of frequency selectivity. To test the above hypothesis directly, we investigated the frequency selectivity of IC neurons under several conditions: monaural stimulation using a semiclosed acoustical stimulation system, binaural stimulation dichotically also using a semiclosed system, free-field stimulation from different azimuths, and free-field stimulation when the ipsilateral ear was occluded monaurally (coated with a thick layer of petroleum jelly, which effectively attenuated acoustic input to this ear). 2. The binaural interaction pattern of 98 IC neurons of northern leopard frogs (Rana pipiens pipiens) were evaluated; of these neurons, there were 34 EE and 64 EO neurons. The majority of IC neurons (92 of 98) showed some degree of binaural inhibition (i.e., showing diminished response when the ipsilateral and contralateral ears were stimulated simultaneously) whether they were designated as EE or EO; these IC neurons thus were classified as EE-I or EO-I. Neurons were classified as exhibiting strong inhibition if the ILD function showed a pronounced response decrement, i.e., a decrease of > or = 50% of the response to monaural stimulation of the contralateral ear. Those neurons that showed smaller response decrements (decrease was > or = 25% but < 50%) were designated as showing weak inhibition. Most of these EE-I and EO-I neurons (n = 68) showed strong binaural inhibition. 3. In agreement with results from our earlier studies, frequency threshold curves (FTCs) of IC neurons were altered by sound azimuth. Independent of binaural interaction pattern, most IC neurons (59 of 98) showed a narrowing of the FTC as sound direction was changed from contralateral 90 deg (c90 degrees) to ipsilateral 90 deg (i90 degrees). IC neurons that exhibited the largest direction-dependent changes in frequency selectivity were typically those that displayed stronger binaural inhibition. Occlusion of the ipsilateral ear, which reduced the strength of binaural inhibition by this ear, abolished direction-dependent frequency selectivity. 4. FTCs of IC neurons that exhibited little to moderate direction-dependent effects on frequency selectivity were associated typically with neurons that displayed weak binaural inhibition. Associated with this weak binaural inhibition, central neural responses under monaural occlusion also displayed only small effects; the FTCs were only slightly broader than those derived in the intact condition, and as before, the experimental manipulation resulted in abolishment of direction-dependent frequency selectivity. 5. In contrast to most IC neurons, which showed direction-dependent narrowing of the FTC, about one-third (34 of 98) of IC neurons studied showed a broadening of the FTC when sound direction was shifted to ipsilateral azimuths. Interestingly, for 90% of these 34 neurons, monaural occlusion resulted in narrowing of the bandwidth at each azimuth instead of broadening of the FTC bandwidth. We have evidence to suggest that this direction-dependent broadening is actually a consequence of a truncation or loss of the tip of the FTC derived at c90 degrees, which results from strong binaural inhibition. 6. To compare the frequency threshold tuning in response to monaural stimulation of each ear with free-field FTCs, we measured FTCs for each of the 34 EE neurons to independent contralateral and ipsilateral stimulation. FTCs derived from ipsilateral monaural stimulation were significantly narrower than those resulting from contralateral monaural stimulation, independent of a neuron's direction-dependent changes in frequency selectivity.  相似文献   

7.
In everyday life we continually need to detect signals against a background of interfering noise (the "cocktail party effect"): a task that is much easier to accomplish using two ears. The binaural masking level difference (BMLD) measures the ability of listeners to use a difference in binaural attributes to segregate sound sources and thus improve their discriminability against interfering noises. By computing the detectability of tones from rate-versus-level functions in the presence of a suprathreshold noise, we previously demonstrated that individual low-frequency delay-sensitive neurons in the inferior colliculus are able to show BMLDs. Here we consider the responses of a population of such neurons when the noise level is held constant (as conventionally in psychophysical paradigms). We have sampled the responses of 121 units in the inferior colliculi of five guinea pigs to identical noise and 500 Hz tones at both ears (NoSo) and to identical noise but with the 500 Hz tone at one ear inverted (NoSpi). The result suggests that the neurons subserving detection of So tones in No (identical noise at the two ears) noise are those neurons with best frequencies (BFs) close to 500 Hz that respond to So tones with an increase in their discharge rate from that attributable to the noise. The detection of the inverted (Spi) signal is also attributable to neurons with BFs close to 500 Hz. However, among these neurons, the presence of the Spi tone was indicated by an increased discharge rate in some neurons and by a decreased discharge rate in others.  相似文献   

8.
Monaural occlusion during early life causes adaptive changes in the tuning of units in the owl's optic tectum to interaural level differences (ILD) that tend to align the auditory with the visual map of space. We investigated whether these changes could be due to experience-dependent plasticity occurring in the auditory pathway prior to the optic tectum. Units were recorded in the external nucleus of the inferior colliculus (ICx), which is a major source of auditory input to the optic tectum. The tuning of ICx units to ILD was measured in normal barn owls and in barn owls raised with one ear occluded. ILD tuning at each recording site was measured with dichotic noise bursts, presented at a constant average binaural level, 20 dB above threshold. The best ILD at each site was defined as the midpoint of the range of ILD values which elicited more than 50% of the maximum response. A physiological map of ILD was found in the ICx of normal owls: best ILDs changed systematically from right-ear-greater to left-ear-greater as the electrode progressed from dorsal to ventral. Best ILDs ranged from 13 dB right-ear-greater to 15 dB left-ear-greater and progressed at an average rate of 12 dB/mm. The representations of ILD were similar on both sides of the brain. In the ICx of owls raised with one ear occluded, the map of ILD was shifted in the adaptive direction: ILD tuning was shifted towards values favoring the non-occluded ear (the direction that would restore a normal space map). The average magnitude of the shift was on the order of 8-10 dB in each of 4 owls. In one owl, the mean shift in ILD tuning was almost identical on both sides of the brain. In another owl, the mean shift was much larger on the side ipsilateral to the occlusion than on the contralateral side. In both cases, the mean shifts measured in each ICx were comparable to the mean shifts measured in the optic tectum on the same sides of the brain. Thus, the adjustments in ILD tuning that have been observed in the optic tectum in response to monaural occlusion are almost entirely due to adaptive mechanisms that operate at or before the level of the ICx.  相似文献   

9.
Microphone arrays can improve speech recognition in the noise for hearing-impaired listeners by suppressing interference coming from other than desired signal direction. In a previous paper [J. M. Kates and M. R. Weiss, J. Acoust. Soc. Am. 99, 3138-3148 (1996)], several array-processing techniques were evaluated in two rooms using the AI-weighted array gain as the performance metric. The array consisted of five omnidirectional microphones having uniform 2.5-cm spacing, oriented in the endfire direction. In this paper, the speech intelligibility for two of the array processing techniques, delay-and-sum beamforming and superdirective processing, is evaluated for a group of hearing-impaired subjects. Speech intelligibility was measured using the speech reception threshold (SRT) for spondees and speech intelligibility rating (SIR) for sentence materials. The array performance is compared with that for a single omnidirectional microphone and a single directional microphone having a cardioid response pattern. The SRT and SIR results show that the superdirective array processing was the most effective, followed by the cardioid microphone, the array using delay-and-sum beamforming, and the single omnidirectional microphone. The relative processing ratings do not appear to be strongly affected by the size of the room, and the SRT values determined using isolated spondees are similar to the SIR values produced from continuous discourse.  相似文献   

10.
Detection of auditory signals by frog inferior collicular neurons in the presence of spatially separated noise. J. Neurophysiol. 80: 2848-2859, 1998. Psychophysical studies have shown that the ability to detect auditory signals embedded in noise improves when signal and noise sources are widely separated in space; this allows humans to analyze complex auditory scenes, as in the cocktail-part effect. Although these studies established that improvements in detection threshold (DT) are due to binaural hearing, few physiological studies were undertaken, and very little is known about the response of single neurons to spatially separated signal and noise sources. To address this issue we examined the responses of neurons in the frog inferior colliculus (IC) to a probe stimulus embedded in a spatially separated masker. Frogs perform auditory scene analysis because females select mates in dense choruses by means of auditory cues. Results of the extracellular single-unit recordings demonstrate that 22% of neurons (A-type) exhibited improvements in signal DTs when probe and masker sources were progressively separated in azimuth. In contrast, 24% of neurons (V-type) showed the opposite pattern, namely, signal DTs were lowest when probe and masker were colocalized (in many instances lower than the DT to probe alone) and increased when the two sound sources were separated. The remaining neurons demonstrated a mix of these two types of patterns. An intriguing finding was the strong correlation between A-type masking release patterns and phasic neurons and a weaker correlation between V-type patterns and tonic neurons. Although not decisive, these results suggest that phasic units may play a role in release from masking observed psychophysically. Analysis of the data also revealed a strong and nonlinear interaction among probe, masker, and masker azimuth and that signal DTs were influenced by two factors: 1) the unit's sensitivity to probe in the presence of masker and 2) the criterion level for estimating DT. For some units, it was possible to examine the interaction between these two factors and gain insights into the variation of DTs with masker azimuth. The implications of these findings are discussed in relation to signal detection in the auditory system.  相似文献   

11.
Spatial receptive fields of primary auditory (AI) neurons were studied by delivering, binaurally, synthesized virtual-space signals via earphones to cats under barbiturate anesthesia. Signals were broadband or narrowband transients presented in quiet anechoic space or in acoustic space filled with uncorrelated continuous broadband noise. In the absence of background noise, AI virtual space receptive fields (VSRFs) are typically large, representing a quadrant or more of acoustic space. Within the receptive field, onset latency and firing strength form functional gradients. We hypothesized earlier that functional gradients in the receptive field provide information about sound-source direction. Previous studies indicated that spatial gradients could remain relatively constant across changes in signal intensity. In the current experiments we tested the hypothesis that directional sensitivity to a transient signal, as reflected in the gradient structure of VSRFs of AI neurons, is also retained in the presence of a continuous background noise. When background noise was introduced three major affects on VSRFs were observed. 1) The size of the VSRF was reduced, accompanied by a reduction of firing strength and lengthening of response latency for signals at an acoustic axis and on-lines of constant azimuth and elevation passing through the acoustic axis. These effects were monotonically related to the intensity of the background noise over a noise intensity range of approximately 30 dB. 2) The noise intensity-dependent changes in VSRFs were mirrored by the changes that occurred when the signal intensity was changed in signal-alone conditions. Thus adding background noise was equivalent to a shift in the threshold of a directional signal, and this shift was seen across the spatial receptive field. 3) The spatial gradients of response strength and latency remained evident over the range of background noise intensity that reduced spike count and lengthened onset latency. Those gradients along the azimuth that spanned the frontal midline tended to remain constant in slope and position in the face of increasing intensity of background noise. These findings are consistent with our hypothesis that, under background noise conditions, information that underlies directional acuity and accuracy is retained within the spatial receptive fields of an ensemble of AI neurons.  相似文献   

12.
Perceived location of tonal stimuli d and narrow noise bands presented in two-dimensional space varies in an orderly manner with changes in stimulus frequency. Hence, frequency has a referent in space that is most apparent during monaural listening. The assumption underlying the present study is that maximum sound pressure level measured at the ear canal entrance for the various frequencies serves as a prominent spectral cue for their spatial referents. Even in binaural localization, location judgments in the vertical plane are strongly influenced by spatial referents. We measured sound pressure levels at the left ear canal entrance for 1.0-kHz-wide noise bands, centered from 4.0 kHz through 10.0 kHz, presented at locations from 60 degrees through -45 degrees in the vertical plane; the horizontal plane coordinate was fixed at -90 degrees. On the basis of these measurements, we fabricated three different bandstop stimuli in which differently centered 2.0-kHz-wide frequency segments were filtered from a broadband noise. Unfiltered broadband noise served as the remaining stimulus. Localization accuracy differed significantly among stimulus conditions (p < .01). Where in the vertical plane most errors were made depended on which frequency segment was filtered from the broadband noise.  相似文献   

13.
A nonspeech pattern identification task was used to study the role of spatial separation of sources on auditory masking in multisource listening environments. The six frequency patterns forming the signal set were comprised of sequences of eight 60-ms tone bursts. Bursts of masking sounds were played synchronously with the signals. The main variables in the study were (1) the difference in spatial separation in the horizontal plane between signals and maskers and (2) the nature of the masking produced by the maskers. Spatial separation of signal and masker ranged from 0-180 degrees. The maskers were of two types: (1) a sequence of eight 60-ms bursts of Gaussian noise intended to produce predominantly peripherally based "energetic masking" and (2) a sequence of eight 60-ms bursts of eight-tone complexes intended to produce primarily centrally based "informational masking." The results indicated that identification performance improved with increasing separation of signal and masker. The amount of improvement depended upon the type of masker and the center frequency of the signal patterns. Much larger improvements were found for spatial separation of the signal and informational masker than for the signal and energetic masker. This was particularly apparent when the acoustical advantage of the signal-to-noise ratio in the more favorable of the two ears (the ear nearest the signal) was taken into account. The results were interpreted as evidence for an important role of binaural hearing in reducing sound source or message uncertainty and may contribute toward solving the "cocktail party problem."  相似文献   

14.
The psychophysical detection threshold of a low-frequency tone masked by broadband noise is reduced by < or = 15 dB by inversion of the tone in one ear (called the binaural masking level difference: BMLD). The contribution of 120 low-frequency neurons (best frequencies 168-2,090 Hz) in the inferior colliculus (ICC) of the guinea pig to binaural unmasking of 500-Hz tones masked by broadband noise was examined. We measured rate-level functions of the responses to identical signals (So) and noise (No) at the two ears (NoSo) and to identical noise but with the signal inverted at one ear (NoS pi): the noise was 7-15 dB suprathreshold. The masked threshold was estimated by the standard separation, "D". The neural BMLD was estimated as the difference between the masked thresholds for NoSo and NoS pi. The presence of So and S pi tones was indicated by discharge rate increases in 55.3% of neurons. In 36.4% of neurons, the presence of So tones was indicated by an increase in discharge rate and S pi tones by a decrease. In 6.8% of neurons, both So and S pi tones caused a decrease in discharge rate. In only 1.5% of neurons was So indicated by a decrease and S pi by an increase in discharge rate. Responses to the binaural configurations were consistent with the neuron's interaural delay sensitivities; 34.4% of neurons showing increases in discharge rate to both So and S pi tones gave positive BMLDs > or = 3 dB (S pi tones were detected at lower levels than So), whereas 37.3% gave negative BMLDs > or = 3 dB. For neurons in which So signals caused an increase in the discharge rate and S pi a decrease, 72.7% gave positive BMLDs > or = 3 dB and only 4.5% gave negative BMLDs > or = 3 dB. The results suggest that the responses of single ICC neurons are consistent with the psychophysical BMLDs for NoSo versus NoS pi at 500 Hz, and with current binaural interaction models based on coincidence detection. The neurons likely to contribute to the psychophysical BMLD are those with BFs near 500 Hz, but detection of So and S pi tones may depend on different populations of neurons.  相似文献   

15.
The perceived lateral position of narrow-band noise (NBN) was studied in a graphic pointer task as a function of the method of compensation for interaural threshold asymmetries in hearing-impaired and normal-hearing subjects. The method of compensation consisted of equal sensation level (EqSL) or equal sound-pressure level (EqSPL) at the two ears within the same subject. The NBN signals were presented at 11 center frequencies with interaural intensity differences (IIDs) that varied from -20 to +20 dB. When equalizing by SL, the perceived lateral position is essentially linearly dependent on the degree and direction of asymmetry in asymmetric normal-hearing and hearing-impaired listeners. Equalizing by SPL shows no such dependency but produces images that are lateralized close to the midline. These results reveal that subjects may have adapted to their threshold asymmetries. These results will be discussed in terms of the fitting of binaural hearing aids.  相似文献   

16.
A Pavlovian conditioned eyeblink response in rabbits (Oryctolagus cuniculus) was used to study psychoacoustical phenomena previously demonstrated in human listeners and other animals. This article contains the results of a tone-in-noise detection study to examine 2 psychoacoustical phenomena in rabbit and in human listeners: (a) the binaural masking level difference (BMLD) and (b) differential performance across reproducible noise masker waveforms. The rabbits demonstrated a BMLD comparable in size to other species. Significant differences in performance across reproducible noise masker waveforms were seen in the rabbits. This performance was compared with the performance of human listeners using the same set of waveforms. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
1. Single-unit recordings were carried out in primary auditory cortex (AI) of barbiturate-anesthetized cats. Neurons, sensitive to sound direction in the horizontal plane (azimuth), were identified by their responses to noise bursts, presented in the free field, that varied in azimuth and sound pressure level (SPL). SPLs typically varied between 0 and 80 dB and were presented at each azimuth that was tested. Each azimuth-sensitive neuron responded well to some SPLs at certain azimuths and did not respond well to any SPL at other azimuths. This report describes AI neurons that were sensitive to the azimuth of monaurally presented noise bursts. 2. Unilateral ear plugging was used to test each azimuth-sensitive neuron's response to monaural stimulation. Ear plugs, produced by injecting a plastic ear mold compound into the concha and ear canal, attenuated sound reaching the tympanic membrane by 25-70 dB. Binaural interactions were inferred by comparing responses obtained under binaural (no plug) and monaural (ear plug) conditions. 3. Of the total sample of 131 azimuth-sensitive cells whose responses to ear plugging were studied, 27 were sensitive to the azimuth of monaurally presented noise bursts. We refer to these as monaural directional (MD) cells, and this report describes their properties. The remainder of the sample consisted of cells that either required binaural stimulation for azimuth sensitivity (63/131), because they were insensitive to azimuth under unilateral ear plug conditions or responded too unreliably to permit detailed conclusions regarding the effect of ear plugging (41/131). 4. Most (25/27) MD cells received either monaural input (MD-E0) or binaural excitatory/inhibitory input (MD-EI), as inferred from ear plugging. Two MD cells showed other characteristics. The contralateral ear was excitatory for 25/27 MD cells. 5. MD-E0 cells (22%, 6/27) were monaural. They were unaffected by unilateral ear plugging, showing that they received excitatory input from one ear, and that stimulation of the other ear was without apparent effect. On the other hand, some monaural cells in AI were insensitive to the azimuth of noise bursts, showing that sensitivity to monaural directional cues is not a property of all monaural cells in AI. 6. MD-EI cells (70%, 19/27) exhibited an increase in responsiveness on the side of the plugged ear, showing that they received excitatory drive from one ear and inhibitory drive from the other. MD-EI cells remained azimuth sensitive with the inhibitory ear plugged, showing that they were sensitive to monaural directional cues at the excitatory ear.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
In a well-designed instrument the noise level is reduced until it is dominated by the front end noise. In a hearing instrument this is the microphone noise. This paper examines the perception of noise in a hearing instrument by both normal-hearing and hearing-impaired listeners. The noise levels are specified as input-referred values in one-third octave bands. Two sets of measurements, the just-objectionable level (JOL) and the just-audible level (JAL), were assessed in third octave bands from 250 to 5000 Hz. The data indicated that the use of a subjectively described acceptability of noise, JOL, is an unreliable measure due to a very large variability across listeners. It is recommended that mean values for the noise threshold level, the JAL, be used as a guide in the optimization of microphone noise design.  相似文献   

19.
解决监控系统中视频干扰的方法   总被引:1,自引:0,他引:1  
归纳了监控系统中常见的视频干扰现象,分析了干扰产生的途径和原因,介绍了针对不同情况采取相应措施解决干扰问题的方法.对系统加装抗干扰滤波器抑制供电电源的干扰;提高视频信号源的输出电平、实现阻抗匹配、采用低噪声放大器、提高施工质量等抑制系统本身的干扰;采用单端接地法、在视频信号传输回路中接入一只高频变压器抑制地电位干扰,研制了视频隔离均衡放大器.对提高监控系统工程质量,确保系统的稳定运行非常有益.  相似文献   

20.
Extracellular recordings were obtained from inferior colliculus neurons of young adult (2-month-old) C57 mice with normal hearing and middle-aged (6-month-old) C57 mice with sensorineural hearing loss as they responded to best frequency (BF) tones (signal) in the presence of a continuous background noise (masker). Rate/level functions were obtained for the signal alone, noise bursts alone, and the signal in continuous noise as a function of masker location. For both groups of mice, thresholds for BF tones were significantly elevated in the presence of noise at all three noise locations. Separating the signal and masker sources significantly improved masked tone thresholds of 2-month-old mice but not hearing-impaired mice. The decreased ability of middle-aged mice to benefit from separation of the signal and masker sources may reflect alterations in binaural processing as a result of sensorineural hearing loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号