首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
在50℃实验研究了以十二烷基甜菜碱(BS-12)+重烷基苯磺酸盐(HABS)为表面活性剂组分、等质量比的Na2SiO3+Na2CO3为碱组分的AS二元和ASP三元复合体系与大庆采油四厂原油之间的动态界面张力.当碱浓度为12g/L、表活剂浓度为0.5g/L、BS-12、HABS质量比在0~1之间变化时,等BS-12、HABS质量比的AS体系的界面张力最低,最低值可迭10-4mN/m数量级.在4~24g/L范围改变碱浓度,则最低界面张力出现在碱浓度为12g/L时,碱对界面张力的影响是双向的.在1~10g/L范围改变外加盐(NaCl)浓度,则盐浓度为3g/L时界面张力最低,1g/L时次之,均可达10-3mN/m.在AS二元体系中加入M=2.5×107的HPAM(加量0~1.6g/L),当HPAM浓度为0.4 g/L时,ASP三元体系的动态界面张力在11min后即降至10-4mN/m数量级,当HPAM浓度为1.2g/L时,三元体系的黏度(7.921/s)为29.0mPa·s,界面张力最低值可达10-3mN/m数量级,为性能最佳体系.  相似文献   

2.
在50℃下以3-磺丙基十二烷基二甲基甜菜碱(SDDAB)为主要组分,分别考察了SDDAB/碱、SDDAB-脂肽/碱二元(AS)和ASP三元复合体系与原油之间的动态界面张力。在SDDAB/碱体系中,不同碱降低界面张力的能力顺序为NaOH>Na2SiO3>Na2CO3>NaHCO3;不同复配弱碱降低界面张力的顺序为Na2CO3-Na2SiO3>Na2SiO3-NaHCO3>Na2CO3-NaHCO3。Na2CO3-Na2SiO3的碱性弱于NaOH,降低界面张力的效果优于强碱NaOH,最低界面张力值可达0.00405 mN/m,界面张力稳定值在10-310-2mN/m数量级之间。在Na2CO3-Na2SiO3加量12 g/L,表面活性剂加量0.5 g/L条件下,SDDAB、脂肽质量比为1:1时的协同作用明显,界面张力最低值可达10-4mN/m数量级。碱对界面张力的影响是双向的。对于SDDAB-脂肽/Na2CO3-Na2SiO3二元复合体系,碱加量为12 g/L时的界面张力最低。在该二元体系中加入HPAM(M=2.5×107),界面张力随着HPAM浓度的增加而升高;当HPAM加量为0.4 g/L时,ASP三元体系的动态界面张力仍在10-3mN/m数量级,为性能最佳体系。  相似文献   

3.
翟怀建 《油田化学》2019,36(3):513-517
为获得耐盐性能良好的甜菜碱型两性表面活性剂,以十二烷基苯(直链)、多聚甲醛、二甲胺及3-氯-2-羟基丙磺酸钠为主要原料,通过氯甲基化反应、亲核取代及季铵化反应合成了烷基苄基甜菜碱驱油剂——N-十二烷基苄基-N,N-二甲基羟丙基磺基甜菜碱(DB-17)。用质谱及红外光谱对合成产物的结构进行了表征,测定了DB-17溶液与新疆原油的油水界面张力,并用岩心驱替实验装置评价了DB-17的驱油效果。结果表明,在N,N-二甲基羟丙基磺酸钠与十二烷基苄基氯的投料摩尔比为1.3∶1、反应温度为70℃、反应时间为6 h的条件下合成的DB-17的产率为90.3%。DB-17具有较强的界面活性。随DB-17浓度的增大,油水界面张力降低。DB-17质量浓度为250 mg/L时,可将油水界面张力降至1.3×10-3m N/m。DB-17的抗盐性较好,15 g/L NaCl溶液对DB-17与原油的界面张力影响较小。250 mg/L的DB-17可使高渗天然岩心在水驱基础上平均提高驱油效率14.7%,DB-17的驱油效果较好。图6表2参15  相似文献   

4.
界面张力表面活性剂具有较强的洗油效果。用十二烷基硫酸钠、椰子油脂肪酸二乙醇酰胺和十二烷基二甲基甜菜碱复配制备出了低界面张力表面活性剂DQ-2。通过界面张力测定,对DQ-2表面活性剂的耐温耐盐、洗油效果、吸附等性能进行室内评价。结果表明,在矿化度5 426 mg/L的条件下,加入质量分数为0.3%低界面张力表面活性剂DQ-2,油水界面张力为4.96×10~(-3) mN/m;动态驱替实验表明低界面张力表面活性剂DQ-2加入可提升采收率11.38%,复配体系具有良好的耐温耐盐性、稳定性和乳化性。  相似文献   

5.
无碱表面活性剂羧基甜菜碱表/界面性能研究   总被引:1,自引:0,他引:1  
研究了自制的含双键羧基甜菜碱BC的表面性能和无碱条件下与大庆原油间的界面性能。45℃时,BC的临界胶束浓度(Ccmc)为1.02×10-5mol/L,γcmc为29.603 mN/m。油水来源为大庆一厂时,在BC质量分数为0.05%0.20%时,BC一元体系、BC/0.09%部分水解聚丙烯酰胺(HPAM)二元体系采出水溶液与原油和模拟原油间的界面张力均达到10-3mN/m数量级,单一活性剂体系与模拟原油间界面张力降幅大于相应的原油结果,二元体系达到超低界面张力的时间比一元体系长。油水来源为大庆三厂时,BC一元体系采出水溶液与原油达到超低界面张力,且45℃老化160 d的界面张力仍保持在10-3数量级,稳定性较好。图7表1参10  相似文献   

6.
在任丘油田河间油藏油层及流体性质(90℃温度、矿化度为5 192.2 mg/L的采出水和5 682.6 mg/L的注入水、河间原油)的条件下,研究了表面活性剂、碱和聚合物相互作用对油水界面张力的影响。结果表明,单一石油磺酸盐CDS-1在有效浓度为0.01%~0.3%范围内,瞬时动态界面张力和平衡界面张力降低到10-2mN/m数量级。向浓度为0.05%的CDS-1溶液中加入Na2CO3,瞬时动态界面张力和平衡界面张力变化不大,仍在10-2mN/m数量级;与Na2CO3高浓度相比,当Na2CO3浓度为0.5%时,平衡界面张力和瞬时界面张力降低明显,瞬时动态界面张力最低值低至10-3mN/m数量级。分别在浓度为0.05%的CDS-1溶液和0.5%Na2CO3/0.05%CDS-1二元体系中加入不同浓度(浓度在500~2 500 mg/L范围内)的部分水解聚丙烯酰胺聚合物M2500,瞬时动态界面张力和平衡界面张力无明显变化,仍在10-2mN/m数量级。该实验结果为河间油藏表面活性剂复合驱油配方的筛选提供了重要依据。  相似文献   

7.
为了明确新疆油田三元复合驱采出液的乳化和破乳机理,研究了采用驱油剂(弱碱Na_2CO_3、表面活性剂KPS和聚合物HPAM)和破乳剂室内配制的三元复合驱模拟乳液的乳化和破乳情况。结果表明,弱碱Na_2CO_3浓度对模拟乳液与原油间的界面张力影响最为明显,当Na_2CO_3、KPS和HPAM浓度均为400 mg/L时,油水界面张力从13.957 mN/m降至0.018 mN/m。表面活性剂KPS对模拟乳液的Zeta电位降低作用明显,当表面活性剂加量为600 mg/L时,乳液的Zeta电位从-31.5 mV降至-53.6 mV;聚合物HPAM对模拟乳液的黏度影响显著,而碱和表面活性剂对模拟乳液的黏度影响不明显。低的界面张力、强的负电性、高的乳化程度和大的水相黏度共同导致三元复合驱乳液稳定性增强。在三元复合驱乳液的破乳过程中,油水界面张力和Zeta电位均显著升高,且升高程度与破乳效果的好坏呈现正相关性。AR型破乳剂对新疆油田三元复合驱采出液的破乳效果最佳。  相似文献   

8.
为了深入研究高温高盐油藏提高采收率的有效方法,探索高效黏弹性体系应用于该类油藏的可行性,在模拟的高温高盐油藏(矿化度20 000 mg/L,钙镁离子总浓度500 mg/L,油藏温度80 ℃)条件下,通过向羧酸型芥酸酰胺基丙基甜菜碱(LJS)溶液中加入低浓度的聚合物HPAM,制得了黏弹性蠕虫状胶束体系,并进一步研究了盐度、温度、老化时间等影响因素。结果表明,在模拟高温高盐油藏的苛刻条件下,黏弹性LJS/HPAM复合体系黏度达到37.22 mPa · s,油水界面张力降低到10?2 mN/m;在温度不变、提高盐度的条件下,LJS/HPAM复合体系的黏度和界面活性基本不变,即使老化90 d后,体系仍然表现出良好的稳定性。室内模拟驱油实验结果表明,该体系可以大幅度提高原油采收率,增幅达16.22%。研究结果为表面活性剂和聚合物复合体系在高温高盐油藏中的实际应用提供了指导和参考经验。  相似文献   

9.
三元复合驱油体系粘弹性及界面活性对驱油效率的影响   总被引:7,自引:2,他引:5  
实验研究了大庆油田所用ASP三元复合驱替液的驱油效率与碱浓度之间的关系。在45℃(大庆油藏温度)下,随碱浓度增大(0~1.5×104mg/L),NaOH/ORS 41/HPAM蒸馏水溶液在全部实验剪切速率范围内的粘度及在全部实验剪切振荡频率范围内的损耗模量、储能模量、松弛时间均不断下降,表明溶液粘弹性不断减小;溶液与原油间的动态界面张力(60min稳定值)基本上不受聚合物浓度的影响,而随碱浓度的增大而下降,在碱浓度≥8.0×103mg/L时达到超低值(10-3mN/m)。用注入水(矿化度3.7×103mg/L)配制的相同ORS 41和HPAM浓度、不同碱浓度(0、3.0×103、6.0×103、1.2×104mg/L)的ASP溶液在不同岩心上的驱油效率变化规律有很大不同,水驱后提高采收率的幅度,在人造非均质岩心上在碱浓度3.0×103和6.0×103mg/L时达到高峰值,在标准长度和加长至两倍长度的两组天然均质岩心上随碱浓度增大而逐步提高,在碱浓度增大至1.2×104mg/L时略有降低。高碱浓度ASP溶液尽管具有超低界面张力,但由于粘度低、粘弹性低,驱油效率也低;油水界面张力在10-1~10-2mN/m、粘弹性(和粘度)较高的ASP溶液在岩心上驱油效率最高;超低界面张力不是绝对必要的。图4表2参11。  相似文献   

10.
通过进行油水动态界面张力测试,系统地研究表面活性剂种类、表面活性剂浓度、水介质矿化度、聚合物及非离子表面活性剂对动态界面张力的影响。结果表明,与传统表面活性剂比12-4-12有较强界面活性,在低浓度下,能将界面张力降低到5×10-3 mN/m。提高表面活性剂浓度,可以缩短达到平衡的时间,但当浓度超过一定值时,继续增加12-4-12浓度,会降低其界面活性。12-4-12最佳浓度为500 mg/L。12-4-12在不同矿化度都表现出良好界面活性,尤其在高矿化度下(25×104 mg/L)最佳。在高矿化度水介质中与常规非离子表面活性剂ANT复配,界面张力可降低到4×10-3 mN/m并稳定在10-3数量级,而与HPAM的复配性能较差,这可能与水介质矿化度过高有关。  相似文献   

11.
选用L1、L2、草酸钠作为络合剂,分别测定加入不同浓度络合剂后HPAM(部分水解聚丙烯酰胺)溶液的黏度,对比水驱后注入聚合物溶液和加入草酸钠溶液的复配体系的驱油效果。实验结果表明,随着L1、L2、草酸钠浓度的增加,聚合物溶液黏度呈现先逐渐增加至峰值后减小的变化规律。当聚合物溶液中分别加入100 mg/L的L1、200 mg/L的L2、300 mg/L的草酸钠时,黏度分别达到峰值74.1 mPa·s、89.3 mPa·s、90.1 mPa·s。与无络合剂相比,相同浓度的聚合物溶液添加200 mg/L的草酸钠可以使得体系驱较水驱提高采出程度再增加4.23%。由此可见,加入草酸钠作为络合剂可以有效的提高聚合物溶液的化学驱采出程度,络合剂的用量直接影响聚合物溶液的黏度,为了达到最佳增黏效果,在使用中应根据经济成本和聚合物溶液的增黏率来综合选择。  相似文献   

12.
以往为了达到超低界面张力,复合驱大多使用较高质量浓度的表面活性剂,通常为1 000~3 000 mg/L,不仅增加了成本且未必能取得好的驱油效果。为了探究低质量浓度表面活性剂的驱油效果,设计了低质量浓度表面活性剂的复合驱物理模拟实验。静态实验结果表明,在低质量浓度表面活性剂条件下,油水界面张力可达到10-2mN/m数量级及以下,加碱后,界面张力更低;碱和表面活性剂都会对聚合物的粘度和粘弹性产生影响,碱在较高温度下会大幅度降低复合体系的粘度和粘弹性。驱油实验结果表明,与水驱相比,在所选择的低质量浓度表面活性剂驱油体系中,表面活性剂—聚合物二元复合驱和碱—表面活性剂—聚合物三元复合驱均可提高采收率19.5%以上,三元复合驱的驱油效果最好,提高采收率21.8%以上。这表明低质量浓度表面活性剂驱油体系驱油效果很好。  相似文献   

13.
UOP Separex Flux+是现有的Separex膜系统中膜元件的替代。Separex Flux+可增加污染物的去除,如酸性气和水。与现有技术相比,其设计可增加天然气加工能力,可使生产者获取更高的效益和降低成本。除了增加系统被加工的气体量外,与现有的膜产品相比,该膜元件每单位膜面积可去除更多的二氧化碳。这有助于使下游处理单元脱瓶颈制约,对  相似文献   

14.
超低界面张力泡沫体系界面性能   总被引:2,自引:0,他引:2  
刘宏生 《石油学报》2011,32(6):1021-1025
利用悬挂滴法和鼓气法,研究了发泡剂体系的界面性能和泡沫性能,考察了发泡剂体系中发泡剂(DWS)和聚合物(HPAM)浓度对界面张力、表面扩张模量及泡沫性能的影响。实验结果表明:发泡剂体系中DWS质量分数为0.1%~0.4%,HPAM浓度低于1500 mg/kg 时,与大庆原油可以形成超低界面张力。当发泡剂体系中HPAM浓度较大时,界面张力呈现增大趋势。DWS表面扩张模量随浓度增加而增加,在较低浓度出现极大值,且极大值处表面扩张模量值较大。发泡剂体系中加入HPAM有利于提高DWS的表面扩张模量。发泡剂体系的起泡性和稳泡性随DWS浓度增加而增强。发泡剂体系中HPAM浓度增加,泡沫稳定性增强,但其起泡性降低。  相似文献   

15.
聚驱后缔合聚合物三元复合驱提高采收率技术   总被引:5,自引:0,他引:5  
三元复合驱是大庆油田聚驱后进一步提高采收率的重要途径,其驱油体系须保证超低油-水界面张力,且能大幅提高波及能力。通过研究烷基苯磺酸盐(ABS)-缔合聚合物(HAPAM)-NaOH三元复合驱体系的性能,并与超高分子量部分水解聚丙烯酰胺(HPAM)三元复合体系进行对比。研究结果表明,HAPAM三元复合体系在NaOH浓度为0.5%~1.2%、ABS浓度为0.025%~0.300%时具有良好的界面活性,油-水界面张力可达10-3mN/m数量级。0.16%HAPAM-0.3%ABS-1.2%NaOH三元复合体系黏度达108.8 mPa ·s,采用HPAM达到相同黏度其浓度为0.265%,因此HAPAM可降低聚合物用量40%。驱油实验结果表明,在相同黏度下,HAPAM三元复合体系在不同孔隙介质中均能提高聚驱后采收率13%以上,比HPAM三元复合体系多提高采收率6%以上。HAPAM三元复合体系具有更高的阻力系数与残余阻力系数、更好的黏弹性以及乳化稳定性,可以为大庆油田聚驱后提高采收率提供新的技术手段。  相似文献   

16.
复合驱体系化学剂静态损失评价方法研究   总被引:1,自引:0,他引:1  
化学剂的损失程度直接影响化学段塞的使用效率。仅考察经油砂吸附后的化学剂损失,不能全面反映驱替过程中的化学剂静态损失程度。为此系统考察了三元复合驱体系经油砂和油相吸附后,表面活性剂质量分数和组成、NaOH质量分数及三元体系与原油间界面张力的变化。三元复合驱组成为:HPAM1.5g/L,表面活性剂上限质量分数0.3%,NaOH上限质量分数1.2%。实验结果表明,经油砂7次吸附后,表面活性剂质量分数从0.28%降至0.02%;NaOH质量分数从1.10%降至0.71%;三元体系经油砂5次吸附后,与原油间的界面张力已无法降至10-3mN/m数量级。经油砂吸附后的三元体系与油相作用后,表面活性剂质量分数降低,最大降幅达50%,表面活性剂分子量明显升高;而NaOH质量分数降幅较小,最大降幅仅为15.22%;经油砂3次吸附后的三元体系与油相作用后,与原油间的界面张力已无法降至10-3mN/m数量级。建议将油砂吸附与油相充分作用相结合,综合评价驱替液的化学剂静态损失程度。  相似文献   

17.
"碱/表面活性剂/聚合物"三元复合驱油技术以其良好的增油效果而受到石油科技工作者的广泛重视,但驱油剂价格高和在油藏内损失量大一直制约着该项技术的大规模推广应用。为了解三元复合驱过程中驱油剂黏度和界面张力变化特征,以相似理论为指导,利用现代物理模拟技术和仪器检测方法,开展了三元复合驱过程中驱油剂黏度和界面张力变化及其影响因素研究。结果表明,随着注入量或PV数的增加,油藏内各处三元复合体系黏度增大、界面张力值降低。在注入PV数相同条件下,距注入井愈近,三元复合体系黏度愈大、界面张力愈低。因滞留和稀释作用的影响,三元复合体系在油藏内运移过程中黏度和界面张力分别呈现不断降低和升高趋势。  相似文献   

18.
二元复合驱采出液的油水界面性质和破乳条件的关系   总被引:2,自引:1,他引:2  
用界面张力仪和表面粘弹性仪研究了部分水解聚丙烯酰胺(HPAM)和表面活性剂(石油磺酸盐和非离子型表面活性剂)形成的二元复合体系对模拟油与模拟水(简称油水)界面特性、乳状液稳定性和采出液处理效果的影响。实验结果表明,含固体悬浮物的采出液过滤后与模拟油间的界面张力和界面剪切黏度降低;随表面活性剂浓度的增加,油水间的界面张力和界面剪切黏度降低,而随HPAM浓度的增加,油水间的界面张力和界面剪切黏度增加;原油与二元复合体系所形成的W/O和O/W型乳状液稳定性随HPAM和表面活性剂浓度的增加而提高;采出液中HPAM和表面活性剂的浓度增加,处理采出液的效果变差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号