首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为合理设计弧齿锥齿轮铣齿机数控运动轴的定位精度,提出一种面向零件加工精度要求的弧齿锥齿轮铣齿机主动精度设计方法。分析了数控弧齿锥齿轮铣齿机的结构和加工原理,通过坐标变换求得弧齿锥齿轮的齿面方程,选取齿距偏差为齿面误差检验项目,建立了机床数控轴运动误差和齿面加工误差之间的映射关系——齿面加工误差模型;用工序能力指数Cp和产品特性值总体标准差σw表示零件的加工精度要求,按4σ原则定义数控运动轴的重复定位精度,并结合齿面加工误差模型中数控轴运动误差的标准差σ,建立了零件加工精度要求和机床数控轴重复定位精度之间的映射关系——齿面加工精度模型;按照等作用误差分配原则,将弧齿锥齿轮的加工精度要求分解为弧齿锥齿轮铣齿机各数控运动轴的重复定位精度。对加工精度要求为6级的YK2275型弧齿锥齿轮铣齿机数控运动轴的重复定位精度进行实例设计,通过样机加工精度测试,验证了所提方法的合理性。  相似文献   

2.
为研究CNC机床各轴运动误差对螺旋锥齿轮齿面接触分析的影响,以多体系统误差建模理论和齿轮啮合原理为基础,引入机床各轴运动误差到螺旋锥齿轮齿面接触分析中,得到机床各轴运动误差对螺旋锥齿轮的齿面加工质量影响的定量分析方法。以SGM法加工的弧齿锥齿轮为例,给出ETCA(error tooth contact analysis)的计算过程,对ETCA和齿面接触分析的结果进行了对比分析,从数量上阐述了误差对齿面接触质量的影响。分析结果表明,机床各轴运动误差对螺旋锥齿轮的齿面接触质量有一定的影响,机床运动轴的运动误差中y轴、x轴的误差对齿面接触质量的影响最大。研究工作为机床各轴运动误差补偿及高精度齿轮制造提供了理论依据。  相似文献   

3.
在进行螺旋锥齿轮数控加工过程中,用直廓截形代替盘状铣刀刀刃理论截形所产生的偏差会影响螺旋锥齿轮齿面加工精度。针对该问题,分析了螺旋锥齿轮数控加工原理,并在此基础上建立了从刀刃到形成齿面的数学模型;依据空间啮合理论计算盘状铣刀刀刃实际截形,分析并建立了盘状铣刀刀盘半径偏差与齿面误差的关系;进一步推导出刀具实际截形误差的计算过程;最后根据螺旋锥齿轮的加工原理对刀具的误差进行了补偿计算,并对补偿结果进行了仿真实验验证,证明了该算法的可靠性。  相似文献   

4.
螺旋锥齿轮真实齿面偏差修正研究   总被引:1,自引:0,他引:1  
根据传统机械式的机床结构,运用4×4 Denavit-Hartenberg齐次变换矩阵、齿轮啮合理论等建立了成形法加工的螺旋锥齿轮齿面偏差识别方程,提出采用截断奇异值分解法(TSVD)与L曲线法求解识别方程,得到机床的修正参数,以指导六轴五联动数控螺旋锥齿轮机床的参数调整,从而达到对齿面偏差的修正.研究表明,采用此方法修正齿面偏差效果显著,这为提高螺旋锥齿轮的加工精度提供了另一条有效途径.  相似文献   

5.
《机械传动》2017,(9):170-174
为了提高弧齿锥齿轮切齿加工效率,减少安装次数,提出了采用双刀盘机床加工弧齿锥齿轮的切齿方法。建立了双刀盘机床结构模型,分析了机床数控加工运动。基于运动等效关系,求解了机床数控轴的运动坐标。在此基础上,为了保证齿面的加工精度,针对双刀盘加工研究了齿面反调修正过程。最后针对一对斯太尔齿轮副17/28进行了切齿加工实验和测量实验,实验结果验证了双刀盘加工弧齿锥齿轮方法的有效性。  相似文献   

6.
有误差的螺旋锥齿轮传动接触分析   总被引:13,自引:2,他引:11  
以多体系统误差建模理论和齿轮啮合原理为基础,提出含有机床运动几何误差以及齿轮副安装误差的螺旋锥齿轮齿面接触分析(Error tooth contact analysis, ETCA)方法。以SGM法(大轮展成法加工,小轮变形法加工)加工的弧齿锥齿轮为例,通过ETCA分析,得到机床运动误差和安装误差对螺旋锥齿轮齿面加工质量影响的定量关系,对ETCA和TCA的结果进行对比分析,结果表明机床运动误差和安装误差对螺旋锥齿轮的齿面接触质量有较大的影响,为了通过齿面接触分析达到更准确的反调加工参数的目的,采用ETCA的分析结果指导加工参数反调更为合理。  相似文献   

7.
通过齿面点离散的方法,评判机床调整参数误差对螺旋锥齿轮齿面误差的影响程度,进一步分析齿面形状变化趋势,指出了由于齿面误差引起啮合区位置偏移,从而导致的不良啮合状态,为机床误差补偿及提高螺旋锥齿轮的制造精度提供了依据.  相似文献   

8.
利用计算机视觉测量系统对螺旋锥齿轮的加工进行测量,尝试了一种新的具有较高测量精度和测量效率的非接触测量方法。通过利用两个固定的摄像机对齿轮加工进行检测,然后对摄像机拍摄到的图像进行三维重建,从而可在计算机中得到螺旋锥齿轮的齿面坐标,再通过与理论齿面进行比较,可以得到加工齿面的误差,从而对加工参数进行修正。这大大简化了螺旋锥齿轮检测和修正的工序,为实现螺旋锥齿轮加工、检测、调整闭环系统提供了技术支持。  相似文献   

9.
弧齿锥齿轮齿面误差的最少参数修正法   总被引:1,自引:0,他引:1  
研究弧齿锥齿轮小轮齿面误差与调整参数误差之间的敏感性关系,基于SFT加工法得出对齿面误差影响较大的调整参数,提出齿面误差最少参数修正法。建立刀倾法加工的弧齿锥齿轮齿面数学模型,推导弧齿锥齿轮小轮的理论齿面方程和误差齿面方程,推导机床调整参数误差作用下的齿面任一点加工误差的解析表达式,提出机床调整参数误差对齿面误差的影响系数概念,依此判断各项机床调整参数误差对齿面误差的影响程度。通过理论齿面和误差齿面的比较,确定各项机床调整参数误差作用下的全齿面法向误差的变化规律。由解析法和数值法相互验证,确定弧齿锥齿轮加工过程中对齿面误差影响较大的调整参数误差项。利用函数法建立机床调整参数变化量与齿面法向误差的关系,采用序列二次规划法,求得机床调整参数修正量最优解。通过实例验证,提出的反调修正方法可以有效降低齿面误差。  相似文献   

10.
根据七轴五联动螺旋锥齿轮磨床结构,应用多体系统理论、齿轮啮合理论建立了含几何误差、热误差的螺旋锥齿轮齿面方程,并分析了砂轮主轴分别沿X、Y轴平移时和绕C轴旋转时对螺旋锥齿轮齿面误差的影响.结果表明,砂轮主轴沿X轴运动对齿面误差影响较大.本文研究对提高螺旋锥齿轮的加工精度和误差补偿提供了理论依据.  相似文献   

11.
从数控机床主轴驱动系统的传动机理出发,系统地研究主轴伺服电机电流信号与切削力之间的关系。利用模糊神经网络理论完成切削力误差建模,研制了数控机床的切削力误差实时补偿系统,并通过实例进行了验证。该研究方案避免了传统用测力仪进行切削力监测花费大、调试难、可靠性低等问题,所建切削力误差模型鲁棒性强,具有重要的工程实用价值。  相似文献   

12.
A systematic machining theory and precision method to determine cutter location in a grinding system is presented for rotary burr. First, the helical cutting edge on various kinds of revolving surfaces is built. Then, based on the geometry model of the helical cutting edge, the smooth spiral rake surface with constant normal rake angle and flank surface can been formed during the one-pass grinding process by this method. No interference between the grinding wheel and workpiece happens by the wheel special rotation. The method has the characteristic of detaching the grinding wheel path solution from specified machining conditions. The grinding wheel path is suitable for different NC machine tools through post processing. Meanwhile, a mechanism kinematic model of the NC machine tool is built, and a generalized algorithm for post-processing of multi-axis NC machine tools is presented. This model is applied to arbitrary configuration of NC machine tool, and the motion value for each axis will be generated by the inputting structure and motion parameters of the machine tool. The model, together with the machining method mentioned in this paper, make the calculation and generation of the grinding wheel path simpler and universal. At last, the validity of the method given in the paper is identified by an example of grinding.  相似文献   

13.
针对混联机床加工过程中干涉检查、空间刀具半径补偿及编程难等问题,分析了混联机床运动学逆解,提出了一种空间任意面内的刀具半径补偿方法,给出了干涉检查的判断条件。以V is-ual C++为开发环境,应用AutoCAD二次开发工具ObjectARX,建立了由NC代码驱动的混联数控机床加工仿真系统,实现了以真实加工条件为依据的加工过程实时动态模拟,预估加工的过程和结果,为检查NC代码的正确性提供了可靠的依据。  相似文献   

14.
To enhance the accuracy of CNC machines for the request of modern industry, an effective static/quasi-static error compensation system composed of an element-free interpolation algorithm based on the Galerkin method for error prediction, a recursive software compensation procedure, and an NC-code converting software, is developed. Through automatically analyzing the machining path, the new error prediction method takes into consideration the fact that the machine structure is non-rigid, and can efficiently determine the position errors of the cutter for compensation without computing a complex error model on-line. The predicted errors are then compensated based on a recursive compensation algorithm. Finally, a compensated NC program will be automatically generated by the NC-code converting software for the precision machining process. Because of the advantage of the element-free theory, the error prediction method can flexibly and irregularly distribute nodal points for accurate error prediction for a machine with complex error distribution characteristics throughout the workspace. To verify the algorithm and the developed system, cutting experiments were conducted in this study, and the results have shown the success of the proposed error compensation system.  相似文献   

15.
随着高速高精数控加工技术的发展,对数控机床切削加工状态的稳定性提出了更高的要求,传统的切削加工状态监测方法中对不确定性处理存在不足。提出了一个基于模态区间的切削状态监测不确定性处理方法,利用模态区间的宽度对传统监测方法中的不确定性加以表述,以解决监测中的不确定性问题。为了验证提出方法的有效性,搭建了切削加工实验平台,通过加速度传感器获取数控机床切削加工信息,由时频分析方法将切削状态划分成稳定、过渡及颤振3个加工阶段,利用基于模态区间的小波包能量百分比方法,提取不同加工阶段的区间特征量,通过Lloyd算法进行编码后作为基于模态区间的广义隐马尔科夫模型的输入特征向量,最后利用广义隐马尔科夫状态辨识方法,对数据机床切削状态进行了识别。实验结果表明,基于模态区间的广义隐马尔科夫模型辨识方法优于传统的隐马尔科夫模型辨识方法。  相似文献   

16.
基于RBF神经网络的曲面加工误差补偿   总被引:1,自引:0,他引:1  
在自由曲面数控加工中,计算误差和机床误差都会带来加工工件的形状误差。形状误差在三维空间分布是无规律的,无法用普通的数学函数表达,导致很难实施误差补偿加工。为了建立误差补偿模型,本文提出了采用RBF(Radial Basis Functions)神经网络逼近误差的三维分布函数。测试结果表明,RBF网络模型具有较好的推广能力,它与传统的BP神经网络模型相比较。RBF网络具有更高的精度、更好的泛化能力和更快的收敛速度。通过修改后的数控NC指令驱动数控机床,使刀具中心偏离一个误差函数求出误差值,实现误差补偿。  相似文献   

17.
Off-line optimization on NC machining based on virtual machining   总被引:4,自引:3,他引:1  
Virtual machining, based-on the model of a machining system, aims to simulate, evaluate and optimize the actual machining process with high sense of reality. It provides digital off-line optimization tools for NC machining. Taking advantage of virtual machining used in machining process simulation, one can build the framework of optimization system on NC machining so that the processes of reliability verification, cutting parameter optimization and error compensation can be integrated into one system to improve machining processes comprehensively. The optimization is realized via modifying NC programs. Several key issues such as virtual machining, cutting parameters optimization, error prediction and compensation are also highlighted. Optimization systems based on virtual machining have been developed to demonstrate the effectiveness of off-line optimization for different purposes. The results show that the machining process is obviously improved.  相似文献   

18.
转轮叶片是水轮机能量转换的关键部件,也是最难加工的零件,目前多轴联动数控加工是解决该类大型雕塑曲面零件最有效的加工方法。多轴联动数控加工编程则是实现其高精度和高效率加工的最重要环节。本文介绍混流式水轮机叶片五轴联动数控加工大型雕塑曲面编程中涉及到转轮叶片三维造型、刀位轨迹计算、切削仿真、机床运动碰撞仿真、后置变换等关键技术。通过对这些技术的链接和研究,开发实现了大型叶片的多轴联动加工。  相似文献   

19.
基于通用五坐标数控机床螺旋锥齿轮NC加工研究   总被引:8,自引:0,他引:8  
基于空间面共轭原理,确定齿轮切齿矢量关系,建立了螺旋锥齿轮的齿面矢量方程。利用空间坐标系的变换,确定出刀具相对工件的位置和姿态,实现刀具与工件的相对运动,从而将传统的螺旋锥齿轮机床加工调整参数转换为适合NC机床加工的运动参数,进行了五轴加工的刀具扫描体计算,在计算机上,对螺旋锥齿轮数控加工进行了仿真,给出了相应的计算和实验结果。在通过五坐标数控机床上实现螺旋锥齿轮加工,确定出螺旋锥齿轮NC加工方法。  相似文献   

20.
从机床坐标系、工件坐标系及编程坐标系出发,分析了数控镗铣类机床及加工中心在同一个工件坐标系下使用多把长度不同的刀具对工件进行加工时进行刀具长度补偿的原因。论述了有基准刀与无基准刀长度补偿的原理,研究了这两种方法的特点,提出了机床Z坐标的计算方法。讨论了撤消长度补偿后CNC控制刀具所走的编程坐标表达的实际意义,这对理解数控加工刀具长度补偿及数控编程具有实际指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号