首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of Fe-doped SH/TiO2 mesoporous photocatalysts have been firstly prepared by one-pot method using P123 as structure-directing agent. This bifunctionalized mesoporous TiO2 possesses perfect anatase crystal structure and high surface area. The surface area of Fe-doped SH/TiO2 mesoporous material is 4 times higher than that of P25. Based on the EPR results, it was found that trivalent Fe ions exist at low spin state and substitutes a part of Ti4+ ions into TiO2 lattice. Fe-dropping in TiO2 extends the adsorption band side of the resulting material to about 600 nm. Much high photocatalytic activity in the degradation of phenanthrene was obtained on the bifunctionalized mesoporous TiO2 under visible light irradiation (λ > 420 nm), which is 6 times higher than that of pristine mesoporous TiO2. The enhancement in the photocatalytic activity of bifunctionalized TiO2 is ascribed to the extended absorption to visible light and strong interaction between SH-groups and PHE molecules.  相似文献   

2.

Abstract  

A mesoporous MoO3/TiO2 composite was prepared from titanate derivative by consecutive self-supporting and ammonia method. All samples were characterized by X-ray Diffraction, N2 adsorption–desorption, Raman Spectra and Field-Emission Scanning Electron Microscopy. The results showed that mesoporous MoO3/TiO2 composite had a higher surface area (173 m2/g) and a better MoO3 dispersion than that prepared by traditional impregnation (90 m2/g). As for hydrodesulfurization tests, mesoporous MoO3/TiO2 composite in this case presented a better catalytic performance, attributed to its high surface area and good dispersion of MoO3. It can be found that self-supporting played a key role in preparing mesoporous MoO3/TiO2 composite with high surface area. Additionally, aqueous ammonia could effectively dissolve excess MoO3, which helped to obtain mesoporous MoO3/TiO2 composite with better dispersion of MoO3.  相似文献   

3.
We prepared ordered hexagonal mesoporous TiO2 by an evaporation-induced self-assembly (EISA) method using Pluronic P123 and tetrabutyl orthotitanate (Ti(OBun)4, TBOT) as the templating agent and the titanium source, respectively. The main purpose of this study was to elucidate the effects of surfactant concentrations on the pore arrangement, pore size, specific surface area and structure of mesoporous TiO2 by the EISA method. The mesostructures of mesoporous TiO2 were characterized with X-ray diffraction (XRD), nitrogen adsorption/desorption isotherms, and transmission electron microscopy (TEM). By varying the concentration of the block copolymer, mesoporous TiO2 of various pore sizes and pore ordering were prepared. Because the mesostructure is governed by the concentration of P123 surfactant at gelation of the solution, a higher P123/TBOT mole ratio favored the formation of highly ordered mesoporous TiO2 with a maximum pore volume of 0.26 cm3/g, a high specific surface area of 244 m2/g, and a BJH average pore size of 4.7 nm.  相似文献   

4.
Aluminium-doped TiO2 mesoporous material was successfully fabricated by solid-state reaction with cetyltrimethylammonium bromide as a template agent and tetrabutyl orthotitanate as a precursor. The characteristic results from low-angle and wide-angle X-ray diffraction, high resolution transmission electron microscopy and energy dispersive spectroscopy, N2 absorption–desorption, Fourier transform infrared spectroscopy, Raman spectroscopy, ultraviolet visible light spectroscopy and X-ray photoelectron spectroscopy (XPS) clearly showed that the mesoporous architecture of aluminium-doped TiO2 was composed of crystal wall and micro-/mesopore formed gradually by the mesopore degradation of anatase TiO2, and aluminium had been doped into the framework of anatase TiO2. The mesoporous Al-doped TiO2 material, not only possessed high thermal stability hexahedral mesostructure, large BET surface area and narrow distribution of pore size, but also showed excellent photodegradation behavior for Congo Red. Furthermore the medium UV–Vis absorption peak of mesoporous aluminium-doped TiO2 in the range 210–370 nm was the absorption peak of aluminium oxide nanoparticles locating the extraframework of TiO2. A small quantity of aluminium doped into anatase TiO2 could obviously improve photodegradation activity, and the photodegradation activity of aluminium-doped TiO2 was higher than that of pure TiO2.  相似文献   

5.

Abstract  

We designed an efficient direct biomass fuel cell (BMFC) anode and prepared a nanocomposite [base electrode/mesoporous n-semiconductor (SC) thin film/metal thin layer]. A Pt thin layer was photodeposited onto a mesoporous 20-μm thick TiO2 thin film having a roughness factor of 2000, which was coated on an F-doped tin oxide/glass base electrode (FTO). This anode/catalyst nanocomposite was efficient at decomposing aqueous solutions of glucose and other biomass-related compounds in combination with an O2-reducing cathode the other side of which was exposed to ambient air. The nanocomposite exhibited sharp optimum conditions at the atomic ratio of Pt/Ti = 0.33 in the BMFC, generating high electrical power of 2 mW cm−2 without any light irradiation or bias potential when using a 1 M glucose aqueous solution. This output power is 20 times as large as that generated by a mesoporous TiO2 film anode under UV-light (18 mW cm−2) irradiation. At this ratio, the coated Pt specifically exhibited metallic luster, and its average Pt thickness on the mesoporous TiO2 nanostructure was calculated to be 0.40 nm. The high BMFC activity was interpreted by the simultaneous Schottky-junction/Ohmic contact nature of the nanocomposite. Other biomass compounds such as sucrose, ethanol and polysaccharides were also effective as direct fuels for the BMFC. Immediately after soaking this composite anode without a cathode in a glucose aqueous solution, continuous evolution of H2 bubbles was observed from the anode surface. The electrical power generation and H2 production are easily changed by connecting and disconnecting a cathode, respectively. Based on a simple design and calculation, the present system with glucose fuel has the potential to construct a module stack of 2 kW m−3. Simultaneous material/energy circulation by using the BMFC with biomass and its waste fuel is proposed for application in future social systems.  相似文献   

6.
Mesoporous TiO2 was prepared by simply controlling the hydrolysis of Ti(OBu)4 with the help of acetic acid. The mesoporous TiO2 had a well-crystallized anatase phase and a high surface area of 290 m2 g−1 with a pore size of about 4 nm. The anatase phase and the mesoporous structure were maintained in the VOx/TiO2 catalyst with a monolayer dispersion of V2O5, however, the surface area decreased to 126 m2 g−1. The catalyst was highly active and selective for methanol oxidation, giving about 55% conversion of methanol and 85% selectivity to dimethoxymethane at 423 K.  相似文献   

7.

Abstract  

UV light-activated highly efficient photocatalytic decomposition of aqueous glucose and polysaccharides (starch and cellulose) to CO2 was successfully achieved by using a mesoporous TiO2 thin film coated on a fluorine-doped transparent conductive glass (FTO). The external quantum efficiency (η) of 0.08 (=8%) was obtained for glucose photodecomposition at neutral pH based on the total incident UV light, and the internal quantum efficiency (η′) was 8 (=800%) based on the photon that was effective for activating the reactant, demonstrating that the major decomposition mechanism is dark auto-oxidation of the activated reactant by O2. Glucose gave η′ values of 19 at pH 12 and 25 at pH 2 demonstrating that when a glucose molecule was once activated by one photon, the molecule can undergo auto-oxidative decomposition to CO2 at these pH under dark. Water-soluble starch was also photodecomposed completely to CO2 with estimated η′ value of 8.6. Water-soluble carboxymethyl cellulose (CMC) also underwent decomposition to CO2 with similar efficiency of η′ = 5. Solid state cellulose powders could be photodecomposed to CO2 by sandwiching them between FTO-coated TiO2 thin films.  相似文献   

8.
In this work, undoped Mg2TiO4 thin films were fabricated on p‐type Si(111) substrates by the sol–gel method, and the red photoluminescence (PL) of the films is introduced and discussed. According to the experimental results, the red emission appears when the films have been thermally treated at higher temperatures, which have a long range and well‐organized crystalline arrangement. Furthermore, to have better realization of the red emission mechanism of Mg2TiO4 films, the optical band gap of Mg2TiO4 (EgMg2TiO4) was estimated at ~3.7 eV; furthermore, 325 nm (corresponding energy, hν = 3.82 eV > EgMg2TiO4) and 633 nm (corresponding energy, hν = 1.96 eV < EgMg2TiO4) excited light sources were used to clarify the position of the defect levels. In addition, the influence of annealing atmospheres (O2, air, and vacuum) on the red emission of our samples is also discussed. A significant variety of red emissions can be found between these annealing conditions: the red emission can be effectively enhanced by O2 annealing, but weakened by vacuum annealing. Results reveal that the red emission of Mg2TiO4 thin films may be highly dependent on the completeness of the O–X–O (X = Mg, Ti) bonds.  相似文献   

9.
Titanium dioxide (TiO2) thin film was fabricated using titanium isopropoxide as a precursor through an atmospheric low-temperature roll-to-roll chemical vapor deposition method. TiO2 was deposited on the PET substrate in the temperature range of room temperature to 100°C, and the working pressure was 740 Torr. The surface morphology of TiO2 thin film was analyzed by field emission scanning electron microscopy and a 2D surface profiler. The results revealed that the growth rate of TiO2 film was 31 nm/min at 100°C, and it also showed that the surface is uniform and smooth. Moreover, the lowest root mean square roughness (R q) value of 1.87 nm was obtained for TiO2 film prepared at 100°C. The composition of TiO2 film was confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The film showed very good chemical and optical properties while increasing the substrate deposition temperature. The UV–Vis spectroscopy analysis revealed that TiO2 films exhibited excellent optical transmittance, more than 91% observed in the visible region.  相似文献   

10.
This study examined the photoelectric conversion efficiency of the dye-sensitized solar cell (DSSC) when the surface of a nanometer-sized TiO2 film, which was prepared using the solvothermal method, was modified by five acid compounds. The TiO2 film exhibited an anatase structure with an average particle size in the range of 10–15 nm, and the maximum absorption band was shown in the UV-visible spectrum around 360 nm. The surface colors of the carboxylic acid-modified TiO2 films were changed to light or dark with differing energy conversion efficiencies. Particularly, the conversion efficiency was considerably enhanced from approximately 6.25% for the non-modified TiO2 film to approximately 7.50% for the film treated by acetic acid of 1.0 mole, with the N719 dye under 100 mW/cm2 of simulated sunlight. FT-IR analysis of the films after N719 dye adsorption confirmed that the IR spectrum of the modified TiO2 showed a sharp and strong band at 500 cm−1, which was assigned to a metal-O bond, due to the formation of a new Ti-O bond between the O of COO and the Ti atom, which was relatively weaker in the non-modified TiO2. Furthermore, these results were in agreement with an electrostatic force microscopy (EFM) study showing that the electrons were transferred rapidly to the surface of the acetic acid-modified TiO2 film, compared with that on the nonmodified TiO2 film.  相似文献   

11.
In this study, innovative TiO2/Al2O3 mono/multilayers were applied by atomic layer depositions (ALD) on ASTM-AZ-31 magnesium/aluminum alloy to enhance its well-known scarce corrosion resistance. Four different configurations of ALD layers were tested: single TiO2 layer, single Al2O3 layer, Al2O3/TiO2 bilayer and Al2O3/TiO2/Al2O3/TiO2 multilayer deposited using Al[(CH3)]3 (trimethylaluminum, TMA), and TiCl4 and H2O precursors. All depositions were performed at 120°C to obtain an amorphous-like structure of both oxide layers. The four coatings were then investigated using different techniques, such as scanning electron microscope (SEM), stylus profilometer, glow discharge optical emission spectrometry (GDOES) and polarization curves in 0.05-M NaCl solution. The thickness of all the coatings was around 100 nm. The layers compositions were successfully investigated by the GDOES technique, although obtained data seem to be affected by substrate roughness and differences in sputtering rates between ceramic oxides and metallic magnesium alloy. Corrosion resistance showed to be strongly enhanced by the nanometric coatings, giving lower corrosion current densities in 0.05-M NaCl media with respect to the uncoated substrate (from 10−4 to 10−6 A/cm2 for the single layers and from 10−4 to 10−8 A/cm2 for the bi- and multilayers). All polarization curves on coated samples also showed a passive region, wider for the bi-layer (from −0.58 to −0.43 V with respect to Ag/AgCl) and multilayer (from −0.53 to −0.38 V with respect to Ag/AgCl) structures.  相似文献   

12.
In this work, in order to investigate the effect of TiO2 layer on the microstructure and piezoelectric properties of (Na0.85K0.15)0.5Bi0.5TiO3 (NKBT) thin films, TiO2 layer was inserted at the interface between the NKBT thin film and substrate and on both sides of the NKBT, i.e., at the interface and on the top of the NKBT thin film. NKBT composited films with alternative TiO2 layer were deposited on Pt/Ti/SiO2/Si substrate by aqueous sol‐gel method. X‐ray diffraction observation found that the degree of (100) preferred orientation strengthened with TiO2 layers added, especially on both sides of NKBT thin film. The TiO2/NKBT/TiO2 composited film with both TiO2 layer of 40 nm thickness exhibited a remnant polarization value Pr of 22.6 μc/cm3 and effective piezoelectric coefficient of approximate 77 pm/V, which are much larger than that of the single‐layered NKBT thin film with Pr value of 13.7 μc/cm3 and of 56 pm/V, respectively. According to the investigation of the temperature‐dependent ferroelectric property, it was found that the Pr gradually increased, and in the meantime the coercive voltage gradually moved to higher voltage with testing temperature varied from 20 to ?150°C. Besides, applied voltage dependence of leakage current density measurement indicated that the TiO2 layer would effectively lower the leakage current of the films, and the TiO2/NKBT/TiO2 composited film both TiO2 layer of 40 nm exhibited the lowest leakage current.  相似文献   

13.
The electrochemical promotion of Pt/YSZ and Pt/TiO2/YSZ catalyst-electrodes has been investigated for the model reaction of C2H4 oxidation in an atmospheric pressure single chamber reactor, under oxygen excess between 280 and 375 °C. It has been found that the presence of a dispersed TiO2 thin layer between the catalyst electrode and the solid electrolyte (YSZ), results in a significant increase of the magnitude of the electrochemical promotion of catalysis (EPOC) effect. The rate enhancement ratio upon current application and the faradaic efficiency values, were found to be a factor of 2.5 and 4 respectively, higher than those in absence of TiO2. This significantly enhanced EPOC effect via the addition of TiO2 suggests that the presence of the porous TiO2 layer enhances the transport of promoting O2− species onto the Pt catalyst surface. This enhancement may be partly due to morphological factors, such as increased Pt dispersion and three-phase-boundary length in presence of the TiO2 porous layer, but appears to be mainly caused by the mixed ionic-electronic conductivity of the TiO2 layer which results to enhanced O2− transport to the Pt surface via a self-driven electrochemical promotion O2− transport mechanism.  相似文献   

14.
We synthesized nanostructured TiO2 thin films by the modified sol-gel template method using the polyethylene glycol as filler media. The TiO2 surface modification for both the thin films, i.e., template and non-template, was done with the ascorbic acid. All the four thin film samples, S1 (TiO2 (non-template), TiO2 (template), S3 (S1 modified with ascorbic acid) and S4 (S2 modified with ascorbic acid), were characterized by various analytical methods. Phase evaluation was monitored by the X-Ray diffraction analysis. Moreover, the thin films particle sizes were obtained to be 22.32, 21.20, 14.52 and 16.77 nm, respectively for the samples S1, S2, S3 and S4. The changes in particle size and morphology due to the PEG and ascorbic acid were determined by scanning electron microscopy (SEM). Similarly, thermal gravimetric (TG) and differential scanning calorimetry (DSC) were performed to determine the decomposition behavior of organic compound present in the solid samples. The functional groups were determined by infrared (IR) analysis. The photocatalytic efficiency, as a reference of Congo red, was conducted using all the four samples of TiO2 thin films. Complete photocatalytic degradation of Congo red was achieved by these samples within 130, 80, 40 and 30 mins of UV illumination.  相似文献   

15.
A fabrication procedure of thermally stable mesoporous SnO2 and TiO2 powders has been overviewed along with their gas-sensing properties. Treatment of an as-prepared composite material of a supramolecule surfactant and SnO2, i.e. a self-assembly of the surfactant fringed with a SnO2 thin wall, with phosphoric acid enabled us to fabricate thermally stable ordered mesoporous SnO2 powder having a d100 value of 3.2 nm, a crystallite size of 2.0 nm and a large specific surface area of 305 m2 g−1 even after calcination at 600 °C for 5 h. A thick film sensor fabricated with the ordered mesoporous SnO2 powder exhibited higher sensing performance than that fabricated with SnO2 powder prepared by a conventional method and therefore having a lower specific surface area. Surface modification of the conventional SnO2 powder with a mesoporous SnO2 layer was also found to be effective for improving the sensing properties. Mesoporous TiO2 powder could be prepared by employing a modified sol-gel method with Ti(NO3)4 and polyethylene glycol having different molecular weights. Higher sensitivity was achieved with a disc-type sensor fabricated with mesoporous TiO2 powder, in comparison with one fabricated with commercially available TiO2 powder in the same form, but its sensing properties needed to be further modified.  相似文献   

16.
The ac response of polyaniline thin films on platinum electrodes was measured at different dc potentials during the N2-fixation in methanol + LiClO4 electrolyte with 0.03 mol L−1 H2SO4 for the first time. The optimum film thickness was found to be 1.5 μm, N2-pressure 50 bar and an optimum electrolysis potential of −0.12 V (NHE). The diffusion coefficients for N2 into the polymer film was found to be (5 ± 2)×10−9 cm2 s−1.  相似文献   

17.
Luminescence functionalization of the ordered mesoporous SBA-15 silica is realized by depositing a CeF3: Eu3+ phosphor layer on its surface (denoted as CeF3: Eu3+/SBA-15/IS, CeF3: Eu3+/SBA-15/SI and CeF3: Eu3+/SBA-15/SS) using three different methods, which are reaction in situ (I-S), solution impregnation (S-I) and solid phase grinding synthesis (S-S), respectively. The structure, morphology, porosity, and optical properties of the materials are well characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, N2 adsorption, and photoluminescence spectra. These materials all have high surface area, uniformity in the mesostructure and crystallinity. As expected, the pore volume, surface area, and pore size of SBA-15 decrease in sequence after deposition of the CeF3: Eu3+ nanophosphors. Furthermore, the efficient energy transfer in mesoporous material mainly occurs between the Ce3+ and the central Eu3+ ion. They show the characteristic emission of Ce3+ 5d → 4f (200–320 nm) and Eu3+ 5D0 → 7F J (J = 1–4, with 5D0 → 7F1 orange emission at 588 nm as the strongest one) transitions, respectively. In addition, for comparison, the mesoporous material CeF3: Eu3+/SBA-15/SS exhibits the characteristic emission of Eu3+ ion under UV irradiation with higher luminescence intensity than the other materials.  相似文献   

18.
Mesoporous TiO2 microspheres were successfully synthesized by a facile hydrothermal process and the obtained product was sintered at 450 °C. The sintered TiO2 powder was characterised by powder X-ray diffraction pattern and the result shows pure anatase phase with good crystalline nature. The morphological image of field emission scanning electron microscopy and high resolution transmission electron microscopy shows spherical shape and size of the particles is around 100 to 300 nm. The Brunauer–Emmett–Teller surface area of synthesized TiO2 material was 56.32 m2 g?1 and average pore width of synthesized materials was 7.1 and 9.3 nm. Bimodal pore structure of TiO2 microspheres has been very effective for electrolyte diffusion into photoanode in dye sensitized solar cells. The synthesized anatase TiO2 microsphere based dye sensitized solar cells have high surface area with light scattering effect to enhance the photocurrent and conversion efficiency than the commercial P25 photoanode material. The power conversion efficiency of synthesized mesoporous TiO2 microspheres and commercial P25 material is 4.2 and 2.7 % respectively. Therefore bimodal mesoporous anatase TiO2 microsphere appears to be a promising and potential candidate for dye sensitized solar cells (DSSC) application.  相似文献   

19.
The photodegradation efficiency (PE) of gaseous toluene was investigated by using titanium dioxide (TiO2) film doped of ruthenium (Ru)-dye/platinum (Pt) in a 3,600 L pilot reactor. Ru-dye was applied as a sensitizer to enhance PE of toluene in both UV and visible wavelength range since its major peaks are 225 nm, 325 nm, 375 nm, and 525 nm. PE by using Pt/TiO2 was more enhanced since Pt plays a role as an electron trapper in UV light range. The 3.2 μm thickness of TiO2 film was optimized for the highest PE. The highest PE was 75%, 85%, and 90% by TiO2, Pt/TiO2, and Ru-dye/Pt/TiO2 film, respectively.  相似文献   

20.
Two different mesoporous silicas (MPS) were synthesized by hydrothermal treatment in NaOH solution of two SiO2 sources. These were microporous silica (MicroPS) derived from selectively acid leached metakaolinite and tetraethylorthosilicate (TEOS). The hydrothermal syntheses of the MPSs were performed at a ratio of SiO2/cetyltrimethyl- ammonium bromide (CTABr)/NaOH/H2O = 1/0.1/0.3/150. The specific surface areas (S BET) of the MPSs from MicroPS (MPS(M)) and TEOS (MPS(T)) were 1070 and 1020 m2/g, respectively. Composites of MPS (75 mass%) with TiO2 (25 mass%) were prepared using both SiO2 and two commercial TiO2 powders, P25 and ST-01. The adsorption–desorption behavior of methylene blue (MB) by the four resulting composites and the two MPSs alone was unique in showing partially reversible behavior. The maximum MB adsorption, observed in the composite of ST-01 with MPS(M), designated (S/M), was 0.034 mmol/g. The rates of MB adsorption in the dark and photodecomposition under UV illumination were considerably different for the four composites and two TiO2 powers, and followed the order ST-01 < S/T < P25 < P/T ≈ P/M ≪ S/M. The removal rate of MB by the composite S/M by adsorption and photodecomposition was further enhanced by heating at 700 °C. Direct photodecomposition of MB without adsorption in the dark was greatly enhanced in the composites, especially in that composed of MPS(M) and ST-01.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号