首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Novel full-swing BiCMOS/BiNMOS logic circuits which use Schottky diode in the pull-up section for low supply-voltage regime are developed. The full-swing pull-up operation is performed by saturating the bipolar transistor with a base current pulse. After which, the base is isolated and bootstrapped to a voltage higher than VDD. The BiCMOS/BiNMOS circuits do not require a PNP bipolar transistor. They outperform other BiCMOS circuits at low supply voltage, particularly at 2 V using 0.5 μm BiCMOS technology. Delay, area, and power dissipation comparisons have been performed. The new circuits offer delay reduction at 2 V supply voltage of 37% to 56% over CMOS. The minimum fanout at which the new circuits outperform CMOS gate is 2 to 3. Furthermore, the effect of the operating frequency on the delay of a wide range of BiCMOS and BiNMOS circuits is reported for the first time, showing the superiority of the Schottky circuits  相似文献   

2.
A 64-bit carry look ahead adder using pass transistor BiCMOS gates   总被引:1,自引:0,他引:1  
This paper describes a 64-bit two-stage carry look ahead adder utilizing pass transistor BiCMOS gate. The new pass transistor BiCMOS gate has a smaller intrinsic delay time than conventional BiCMOS gates. Furthermore, this gate has a rail-to-rail output voltage. Therefore the next gate does not have a large degradation of its driving capability. The exclusive OR and NOR gate using the pass transistor BiCMOS gate shows a speed advantage over CMOS gates under a wide variance in load capacitance. The pass transistor BiCMOS gates were applied to full adders, carry path circuits, and carry select circuits. In consequence, a 64-bit two-stage carry look ahead adder was fabricated using a 0.5 μm BiCMOS process with single polysilicon and double-metal interconnections. A critical path delay time of 3.5 ns was observed at a supply voltage of 3.3 V. This is 25% better than the result of the adder circuit using CMOS technology. Even at the supply voltage of 2.0 V, this adder is faster than the CMOS adder  相似文献   

3.
A new delay model and optimization method is proposed for a low-power BiCMOS driver. A transient overdrive, base directly-tied complementary BiCMOS logic circuit operates faster than conventional BiCMOS and CMOS circuits for supply voltage down to 1.5 V by using a speed-power-area optimization approach. An analytical delay expression is derived for the first time for a full-swing BiCMOS circuit with short-channel effects. The circuit is simulated with a HSPICE model using 0.8-μm BiCMOS technology with a 6-GHz n-p-n and a 1-GHz p-n-p transistor. The simulation results have verified the analytical results and demonstrated that the circuit can work up to 200 MHz operating frequency for a load capacitance of 1 pF at 1.5 V of supply voltage  相似文献   

4.
Circuit techniques are presented for increasing the voltage swing of BiCMOS buffers through active charging and discharging using complementary bipolar drivers. These BiCMOS circuits offer near rail-to-rail output voltage swing, higher noise margins, and higher speed of operation at scaled-down power supply voltages. The circuits are simulated and compared to BiCMOS and CMOS buffers. The comparison shows that the conventional BiCMOS and the complementary BiCMOS buffers are efficient for power supply voltages greater than 3V and that if the power supply voltage is scaled down (<3 V) and the load capacitance is large (>1 pF), the complementary BiCMOS buffers would be the most suitable choice. They provide high speed and low delay to load sensitivity and high noise margins. The first implementation is favorable near a 2.5-V power supply for its smaller area  相似文献   

5.
Two new bipolar complementary metal-oxide-semiconductor (BiCMOS) differential logic circuits called differential cross-coupled bootstrapped BiCMOS (DC2B-BiCMOS) and differential cross-coupled BiCMOS (DC2-BiCMOS) logic are proposed and analyzed. In the proposed two new logic circuits, the novel cross-coupled BiCMOS buffer circuit structure is used to achieve high-speed operation under low supply voltage. Moreover, a new bootstrapping technique that uses only one bootstrapping capacitor is adopted in the proposed DC2B-BiCMOS logic to achieve fast near-full-swing operation at 1.5 V supply voltage for two differential outputs. HSPICE simulation results have shown that the new DC2B-BiCMOS at 1.5 V and the new DC2-BiCMOS logic at 2 V have better speed performance than that of CMOS and other BiCMOS differential logic gates. It has been verified by the measurement results on an experimental chip of three-input DC2B-BiCMOS XOR/XNOR gate chain fabricated by 0.8 μm BiCMOS technology that the speed of DC2-BiCMOS at 1.5 V is about 1.8 times of that of the CMOS logic at 1.5 V. Due to the excellent circuit performance in high-speed, low-voltage operation, the proposed DC2B-BiCMOS and DC2-BiCMOS logic circuits are feasible for low-voltage, high-speed applications  相似文献   

6.
The degradation of delay time of totem-pole BiCMOS, CBiCMOS, and BiNMOS circuits by supply voltage reduction is evaluated by a novel delay-time model. It has been found that base-collector capacitance plays a greater role in determining the delay time than other parasitic capacitances in BiCMOS circuits. It is concluded that when the input signal swings fully from zero to the supply voltage, the minimum supply voltage to guarantee high-speed operation over CMOS circuits is almost the same for the three kinds of BiCMOS circuits. When the input swing is reduced by the base-emitter voltage, however, BiNMOS and CBiCMOS circuits can operate on a lower supply voltage than totem-pole BiCMOS circuits  相似文献   

7.
A BiCMOS logic circuit with very small input capacitance has been developed, which operates at low supply voltages. A High-beta BiCMOS (Hβ-BiCMOS) gate circuit which fully utilizes the bipolar transistor features achieves 10 times the speed of a CMOS gate circuit with the same input capacitance and operating at 3.3 V supply voltage. In order to lower the minimum supply voltage of Hβ-BiCMOS, a BiCMOS circuit configuration using a charge pump to pull up the output high level of the BiCMOS gate circuit is proposed. By introducing a BiCMOS charge pump, Hβ-BiCMOS achieves very high speed operation at sub-2.0 V supply voltage. It has also been demonstrated that only a very small number of charge pump circuits are required to drive a large number of Hβ-BiCMOS gate circuits  相似文献   

8.
We designed and fabricated an extremely low-power CMOS/SIMOX programmable counter large scale integrated circuits (LSI) for high-speed phase-locked loop (PLL) frequency synthesizer applications. This was to verify the potential usefulness of ultrathin-film 0.24-μm-gate CMOS/SIMOX process technology for creating an extremely low-power LSI containing high-speed circuits operating at frequencies of at least 1 GHz and at low supply voltages. While operating at up to 2.2 GHz and consuming only 4.5 mW at 1.5 V, it is capable of 4-GHz performance with power consumption of 19 mW at 2.5 V. Even at a low supply voltage of 1.5 V, high input-sensitivity was also achieved in the 1- to 2-GHz frequency range. These low-power and high input-sensitivity characteristics outperform those of state-of-the-art BiCMOS PLL LSIs  相似文献   

9.
New true-single-phase-clocking (TSPC) BiCMOS/BiNMOS/BiPMOS dynamic logic circuits and BiCMOS/BiNMOS dynamic latch logic circuits for high-speed dynamic pipelined system applications are proposed and analyzed. In the proposed circuits, the bootstrapping technique is utilized to achieve fast near-full-swing operation. The circuit performance of the proposed new dynamic logic circuits and dynamic latch logic circuits in both domino and pipelined applications are simulated by using HSPICE with 1 μm BiCMOS technology. Simulation results have shown that the new dynamic logic circuits and dynamic latch logic circuits in both domino and pipelined applications have better speed performance than that of CMOS and other BiCMOS dynamic logic circuits as the supply voltage is scaled down to 2 V. The operating frequency and power dissipation/MHz of the pipelined system, which is constructed by the new clock-high-evaluate-BiCMOS dynamic latch logic circuit and clock-low-evaluate-BiCMOS (BiNMOS) dynamic latch logic circuit, and the logic units with two stacked MOS transistors, are about 2.36 (2.2) times and 1.15 (1.1) times those of the CMOS TSPC dynamic logic under 1.5-pF output loading at 2 V, respectively. Moreover, the chip area of these two BiCMOS pipelined systems is about 1.9 times and 1.7 times as compared with that of the CMOS TSPC pipelined system. A two-input dynamic AND gate fabricated with 1 μm BiCMOS technology verifies the speed advantage of the new BiNMOS dynamic logic circuit. Due to the excellent circuit performance in high-speed, low-voltage operation, the proposed new dynamic logic circuits and dynamic latch logic circuits are feasible for high-speed, low-voltage dynamic pipelined system applications  相似文献   

10.
Novel low-voltage swing CMOS and BiCMOS driver/receiver circuits for low-power VLSI applications are proposed. Interconnect wire drivers with low output signal swing are employed. Special receivers provide single and double level conversion while minimizing the total driver/receiver transmission delay. These level converters have no DC power dissipation. At 3.3 V power supply voltage, the proposed circuits consume less power without delay penalty. The power saving is observed to be as high as 30%. At lower supplies further power and delay improvements are observed  相似文献   

11.
A Thin-Film-Silicon-On-Insulator Complementary BiCMOS (TFSOI CBiCMOS) technology has been developed for low power applications. The technology is based on a manufacturable, near-fully-depleted 0.5 μm CMOS process with the lateral bipolar devices integrated as drop-in modules for CBiCMOS circuits. The near-fully-depleted CMOS device design minimizes sensitivity to silicon thickness variation while maintaining the benefits of SOI devices. The bipolar device structure emphasizes use of a silicided polysilicon base contact to reduce base resistance and minimize current crowding effects. A split-oxide spacer integration allows independent control of the bipolar base width and emitter contact spacing. Excellent low power performance is demonstrated through low current ECL and low voltage, low power CMOS circuits. A 70 ps ECL gate delay at a gate current of 20 μA is achieved. This represents a factor of 3 improvement over bulk trench-isolated double-polysilicon self-aligned bipolar circuits. Similarly, CMOS gate delay shows a factor of 2 improvement over bulk silicon at a power supply voltage of 3.3 V. Finally, a 460 μW 1 GHz prescaler circuit is demonstrated using this technology  相似文献   

12.
A BiCMOS logic circuit applicable to sub-2-V digital circuits has been developed. A transiently saturated full-swing BiCMOS (TS-FS-BiCMOS) logic circuit operates twice as fast as CMOS at 1.5-V supply. A newly developed transient-saturation technique, with which bipolar transistors saturate only during switching periods, is the key to sub-2-V operation because a high-speed full-swing operation is achieved to remove the voltage loss due to the base-emitter turn-on voltage. Both small load dependence and small fan-in dependence of gate delay time are attained with this technique. A two-input gate fabricated with 0.3-μm BiCMOS technology verifies the performance advantage of TS-FS-BiCMOS over other BiCMOS circuits and CMOS at sub 2-V supply  相似文献   

13.
Novel high speed BiCMOS circuits including ECL/CMOS, CMOS/ECL interface circuits and a BiCMOS sense amplifier are presented. A generic 0.8 μm complementary BiCMOS technology has been used in the circuit design. Circuit simulations show superior performance of the novel circuits over conventional designs. The time delays of the proposed ECL/CMOS interface circuits, the dynamic reference voltage CMOS/ECL interface circuit and the BiCMOS sense amplifier are improved by 20, 250, and 60%, respectively. All the proposed circuits maintain speed advantage until the supply voltage is scaled down to 3.3 V  相似文献   

14.
BiCMOS standard cell macros, including a 0.5-W 3-ns register file, a 0.6-W 5-ns 32-kbyte cache, a 0.2-W 3-ns table look-aside buffer (TLB), and a 0.1-W 3-ns adder, are designed with a 0.5-μm BiCMOS technology. A supply voltage of 3.3 V is used to achieve low power consumption. Several BiCMOS/CMOS circuits, such as a self-aligned threshold inverter (SATI) sense amplifier and an ECL HIT logic are used to realize high-speed operation at the low supply voltage. The performance of the BiCMOS macros is verified using a fabricated test chip  相似文献   

15.
A simple BiCMOS configuration employing the source-well tie PMOS/n-p-n pull-down combination is proposed for low-voltage, high-performance operations. The improved BiCMOS gate delay time over that of the NMOS/n-p-n (conventional) BiCMOS gate is confirmed by means of inverter simulations and measured ring oscillator data. The source-well tie PMOS/n-p-n BiCMOS gate outperforms its conventional BiCMOS counterpart in the low-voltage supply range, at both high and low temperatures. A critical speed path from the 68030 internal circuit is used as a benchmark for the proposed BiCMOS design technique. The measured propagation delay of the BiCMOS speed path is faster than its CMOS counterpart down to 2.3 V supply voltage at -10°C and sub-2 V at 110°C  相似文献   

16.
The authors discuss the merged BiCMOS (MBiCMOS) gate, a unique circuit configuration to improve BiCMOS gate performance at low supply voltages. MBiCMOS maintains a measured delay and power-delay advantage over CMOS into the 2-V supply range, in a simple four-device gate that does not require any change in the standard BiCMOS processing sequence. In a 2-μm technology, MBiCMOS outperforms CMOS down to a 2.6-V supply. Gates designed for fabrication in a 0.5-μm technology and simulated using measured device parameters indicate that MBiCMOS can be used to extend the performance crossover voltage to below 2 V in the submicrometer regime. A full-swing version of the MBiCMOS gate (FS-MBiCMOS) is introduced. Simulations of 2-μm gates show FS-MBiCMOS/CMOS performance crossover voltages of 2.2 V  相似文献   

17.
A BiCMOS technology has been developed that integrates a high-performance self-aligned double-polysilicon bipolar device into an advanced 0.25 μm CMOS process. The process sequence has been tailored to allow maximum flexibility in the bipolar device design without perturbation of the CMOS device parameters. Thus, n-p-n cutoff frequencies as high as 60 GHz were achieved while maintaining a CMOS ring oscillator delay per stage of about 54 ps at 2.5 V supply comparable to the performance in the CMOs-only technology. BiCMOS and BiNMOS circuits were also fabricated. BiNMOS circuits exhibited ≈45% delay improvement compared to CMOS-only circuits under high load conditions at 2.5 V  相似文献   

18.
A low voltage full-swing BiCMOS bootstrapping technique that allows the design of BiCMOS logic circuits at supply voltages down to 1.5 V is presented. This is the first 1.5-V design technique that does not require complementary bipolar devices. The technique is shown to have significant advantages over existing low voltage BiCMOS logic designs in sub-3 V operation. Inverter gates fabricated using a 0.8-μm technology were operated at 150 MHz with a supply voltage of 1.5 V. Implementation of this technique on dynamic logic is also demonstrated and experimental results match closely with simulation  相似文献   

19.
A temperature-compensation circuit technique for a dynamic random-access memory (DRAM) with an on-chip voltage limiter is evaluated using a 1-Mb BiCMOS DRAM. It was found that a BiCMOS bandgap reference generator scheme yields an internal voltage immune from temperature and Vcc variation. Also, bipolar-transistor-oriented memory circuits, such as a static BiCMOS word driver, improve delay time at high temperatures. Furthermore, the BiCMOS driver proves to have better temperature characteristics than the CMOS driver. Finally, a 1-Mb BiCMOS DRAM using the proposed technique was found to have better temperature characteristics than the 1-Mb CMOS DRAM which uses similar techniques, as was expected. Thus, BiCMOS DRAMs have improved access time at high temperatures compared with CMOS DRAMs  相似文献   

20.
New high-speed BiCMOS current mode logic (BCML) circuits for fast carry propagation and generation are described. These circuits are suitable for reduced supply voltage of 3.3-V. A 32-b BiCMOS carry select adder (CSA) is designed using 0.5-μm BiCMOS technology. The BCML circuits are used for the correct carry path for high-speed operation while the rest of the adder is implemented in CMOS to achieve high density and low power dissipation. Simulation results show that the BiCMOS CSA outperforms emitter coupled logic (ECL) and CMOS adders  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号