首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
研究了相同流动度下石灰石粉对水泥浆体流变性能的影响规律,并采用Zeta电位仪和偏光显微镜测试了浆体Zeta电位及显微结构,通过最小需水量法分析了水泥浆体中颗粒湿堆积密实度和颗粒表面的水膜层厚度,探讨了石灰石粉对水泥浆体流变性能的作用机理.结果表明:流动度相同时,浆体的屈服应力基本相同;随着石灰石粉细度的减小以及掺量的增加,水泥浆体的黏度逐渐降低;石灰石粉在水溶液中的Zeta电位显著高于水泥,因此可大幅度减少水泥浆体中的絮凝结构,增大水泥浆体中颗粒湿堆积密实度,从而释放出更多自由水,增加颗粒表面的水膜层厚度,进而降低颗粒间相互作用力,导致水泥浆体黏度显著降低.  相似文献   

2.
为研究花岗岩石灰石粉和S95级矿渣粉对水泥浆体流变性能的影响。采用R/S型流变仪测试了水泥-石灰石粉浆体、水泥-石灰石粉-矿渣粉复合浆体的流变性能,采用最小需水量法对浆体湿堆积密实度进行测试,并采用Zeta电位测试仪测试浆体的Zeta电位。结果表明:随石灰石粉掺量的增加和颗粒粒径减小(比表面积增大),浆体的剪切应力和表观黏度减小,石灰石粉粒径对浆体的流变性能的影响大于掺量的影响;颗粒粒径更细的石灰石粉和矿渣粉改善了浆体的湿堆积密实度;掺入石灰石粉后浆体的Zeta电位降低,但同时掺加少量的矿渣粉可以在一定程度上提高浆体的Zeta电位,改善浆体中的絮凝现象。  相似文献   

3.
试验研究了内掺和外掺两种情况下不同细度石灰石粉对混凝土抗压、抗折强度和抗压弹性模量的影响。试验结果表明,内掺时,混凝土力学性能有所降低,外掺时则可以提升,且随着石灰石粉细度的增加,降低的程度逐渐减小,而提升的趋势则愈加明显。因此,提高石灰石粉细度对改善石灰石粉水泥基材料力学性能是有利的。  相似文献   

4.
本文着重研究了不同细度石灰石粉在混凝土中应用时的性能差异,结果表明:比表面积对石灰石粉的性能影响较大。当石灰石粉的比表面积大于800m2/kg时,石灰石粉的需水量比和活性指数都有显著改善;石灰石粉代替粉煤灰应用于混凝土中时,混凝土的工作性能、抗压强度也明显提高。  相似文献   

5.
该文研究了石灰石粉掺量和细度对中等强度普通混凝土的工作性能和强度影响。研究结果表明:混凝土中掺入一定量的石灰石粉后,其坍落度随着石灰石粉掺量和细度的增加而增加,但增加速率明显放缓。混凝土的抗压强度在石灰石粉掺量为15%时出现最大值,而且石灰石粉细度越大,混凝土的早期强度越高,但其后期强度出现相反规律。  相似文献   

6.
通过用石灰石粉替代粉煤灰或矿渣粉进行试验,研究石灰石粉对混凝土强度和工作性能的影响。试验结果表明:在混凝土中掺入适量的石灰石粉,可提高混凝土的和易性,减小坍落度损失,但石灰石粉替代量超过总掺合料的50%以上,混凝土坍损变大,后期强度增进变小。  相似文献   

7.
吴得卿 《居业》2023,(5):205-206
本文以石灰石粉为矿物掺合料,研究其对混凝土性能的影响。结果表明,掺加石灰石粉的新拌混凝土皆未出现泌水离析。但随着石灰石粉掺量的增加,坍落度降低,后期抗压强度下降,干燥收缩率呈上升趋势。  相似文献   

8.
研究了石灰石粉对混凝土干燥收缩及抗冻性能的影响。结果表明,随着石灰石粉掺量的增大,混凝土收缩逐渐增大;随着石灰石粉细度的增大,混凝土收缩逐渐减小,低掺量的超细石灰石粉可以抑制混凝土的干燥收缩;石灰石粉的掺入降低了混凝土的抗冻性,石灰石粉的细度越大,对混凝土抗冻性能的影响越小。  相似文献   

9.
主要研究混凝土中掺入石灰石粉,混凝土的立方体抗压强度和抗冻性能。当石灰石粉掺量不大于10%时,混凝土的强度比基准高。随石灰石粉掺量的增加时,混凝土的强度降低。在石灰石粉掺和量不大于15%时,抗冻性能均比基准混凝土高。随石灰石粉掺量的增加,抗冻性能降低。  相似文献   

10.
通过RHEOLAB QC型旋转黏度计测试水泥-石灰石粉浆体动、静态屈服应力,探究了水泥-石灰石粉浆体流变和结构建立之间的相关性.结果表明:水泥浆体的流变与其结构建立紧密相关,流变是特定时间点的动态结构建立特征,其衰减速率反映结构建立性能,水泥浆体流变性能发展呈现Roussel线性增长;随石灰石粉掺量增加,水泥浆体流变性能的衰减速率先增加后减小;动态过程会弱化水泥-石灰石粉浆体的结构建立,相较于动态结构建立,石灰石粉对水泥浆体静态结构建立的促进作用更加明显;水泥-石灰石粉浆体静态结构建立呈Perrot指数增长,随动态过程的增加,其后的水泥-石灰石粉浆体静态结构建立速率先增加后减小;动态过程较长且石灰石粉掺量小于20%时,有利于水泥浆体的流变和结构建立;动态过程较短且石灰石粉掺量达30%时,有利于水泥浆体的流变和结构建立.  相似文献   

11.
采用RHEOLAB QC型旋转黏度计测定水泥-石灰石粉浆体的流变性能,研究了颗粒群特性(粒径分布和堆积密度)与浆体流变性能的关系,并在此基础上探究了颗粒水膜厚度与浆体流变性能的关系,结果表明:石灰石粉掺入水泥浆体中使颗粒分布变广,颗粒堆积状态得以改善;粒径分布系数与浆体屈服应力、稠度的线性相关性不高,相关系数仅为0.6...  相似文献   

12.
通过RHEOLAB QC型旋转黏度计测试了水泥石灰石粉浆体的屈服应力,采用EDLVO理论定量分析了浆体颗粒间作用力,探究了颗粒间作用力对浆体屈服应力的影响机制.结果表明:颗粒间的范德华力是主要的远程力,而在近程时静电力和水合作用力也具有重要作用;浆体总颗粒间作用力的差异主要由颗粒表面间距决定;当D F拟合度增加时,总颗粒间作用力表现为排斥力先增后减,屈服应力先减后增.  相似文献   

13.
用静态屈服应力表征了水泥-石灰石粉浆体的结构建立速率,探究了颗粒间作用力与结构建立的关系.结果 表明:石灰石粉减小了水泥浆体的初始结构建立速率,且其随石灰石粉的总表面积增加而降低,随平均颗粒间距减小而增加;静电力随石灰石粉的总表面积减小与颗粒的Zeta电位增大而增大,范德华力、酸碱作用力与EDLVO作用力随石灰石粉的总...  相似文献   

14.
运用宾汉姆模型试验研究了不同超塑化剂掺量下石灰石粉等量取代水泥对水泥净浆流变性能的影响.结果表明:石灰石粉较大比表面积和较小表观密度带来的对水较强吸附作用和使水粉比(体积比)有所降低劣化了水泥净浆的流变性能,而其良好的颗粒级配和形貌,以及促进水泥颗粒吸附超塑化剂的作用则对水泥净浆的流变性能有改善效果.这2方面因素相互制约,使得超塑化剂掺量出现明显的临界点.  相似文献   

15.
采用RHEOLAB QC型旋转黏度计,以剪切速率恒定的方式测试了水泥-石灰石粉浆体的静态屈服应力、结构建立速率与塑性应变能,研究了不同温度下石灰石粉对新拌水泥浆体结构建立的影响.结果表明:当剪切速率为0.1s~(-1)时,水泥-石灰石粉浆体表现为黏弹性流体,石灰石粉对水泥浆体结构建立的影响与温度有关,浆体静态屈服应力在20℃时随石灰石粉掺量增加而增大,在5,10,30℃时则受石灰石粉掺量的影响较小;浆体结构建立速率在20,30℃时随石灰石粉掺量增加而先增大后减小,并在石灰石粉掺量为10%时达到最大值,在5,10℃时则基本不受石灰石粉掺量的影响;浆体的塑性应变能在5,10,20℃时随石灰石粉掺量增加而增大,但在30℃时基本不变;而当石灰石粉掺量相同时,浆体塑性应变能随温度的升高先增大后降低,并在10℃时达到峰值.  相似文献   

16.
石灰石粉对高铝水泥性能的影响   总被引:2,自引:0,他引:2  
研究了石灰石粉对高铝水泥胶砂试件强度及孔结构的影响,分析了石灰石粉在高铝水泥水化过程中的作用.结果表明:高铝水泥胶砂试件抗折强度和抗压强度均随石灰石粉掺量(质量分数,下同)的增加呈现先升高后降低的趋势,各龄期(1,3,7,28d)胶砂试件的抗折强度与抗压强度均在石灰石粉掺量为3%时达到最大值;适量石灰石粉掺入高铝水泥中可生成单碳型水化碳铝酸钙和氢氧化铝,提高胶砂试件的密实度和强度;高铝水泥胶砂试件28d总孔隙率、大孔孔隙率和小孔孔隙率均随石灰石粉掺量的增加呈现先减小后增大的趋势,当石灰石粉掺量为3%时,胶砂试件各孔隙率均最小.  相似文献   

17.
石灰石硅酸盐水泥力学性能研究   总被引:15,自引:1,他引:15  
研究了影响石灰石硅酸盐水泥力学性能的各种因素,指出该品种水泥可具有同普通水泥相同的力学性能.提出强度量化概念,优化组合.利用SEM,XRD等测试方法说明石灰石硅酸盐水泥的水化特点,早强增强机理及水泥石结构特征.  相似文献   

18.
超塑化剂和石灰石粉对水泥浆剪切增稠行为的影响   总被引:2,自引:1,他引:1  
选用聚羧酸醚(PCE)和萘系磺酸盐(PNS)2种超塑化剂和粒径分别为3000目(4μm),1500目(8μm)和1250目(10μm)的3种天然石灰石粉,制备了水灰比或水胶比(质量比)为0.3的硅酸盐水泥浆.采用同轴圆筒式流变仪测量其流变曲线,并应用H B流变模型对测试数据进行拟合处理.结果表明:当超塑化剂掺量达到一定量时,表征水泥浆剪切增稠流变行为的流变指数n大于1,超塑化剂掺量越大,n值越大;当两种超塑化剂掺量相同时,PCE的n值较PNS的大;平均粒径与水泥颗粒相差越大、粒径分布越分散的石灰石粉取代水泥后,n值越小.PCE的空间位阻作用分散减弱了水泥颗粒间相互作用力,剪切作用下水泥颗粒容易形成“动水颗粒丛”,水泥浆更易发生剪切增稠现象;多分散粒径比单粒径或粒径分布较窄的悬浮体系有更多的自由空间,颗粒间动水压力难以使颗粒形成“动水颗粒丛”,浆体不易发生剪切增稠现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号