首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
哈希方法因快速及低内存的特点广泛应用于大规模图像检索中,但在哈希函数构造过程中对数据稀疏性缺乏研究。为此,提出一种无监督稀疏自编码的图像哈希算法。在哈希函数的学习过程中加入稀疏构造过程和自动编码器,利用稀疏自编码的KL差异对哈希码进行稀疏约束,以增强局部保持映射过程中的判别性。在CIFAR-10数据集和YouTube Faces数据集上进行实验,结果表明,该算法平均准确率优于DH算法。  相似文献   

2.
针对图像检索,提出一种基于哈希编码和卷积神经网络的方法。主要是在卷积神经网络(CNN)中加入哈希层,采用由粗到精的分级检索策略,根据学习到的哈希码进行粗检索得到与查询图像相同或相似的[m]幅图像构成图像池,计算池内图像与查询图像高层语义特征之间的欧氏距离进行精检索,达到最终的检索目的。提出方法将哈希层的损失作为优化目标之一,结合图像的两种特征进行检索,弥补了现有方法中直接利用CNN深层特征检索耗时、占用内存的不足。在印花织物和CIFAR-10数据集上的实验结果表明,提出方法检索性能优于其他现有方法。  相似文献   

3.
基于监督学习的卷积神经网络被证明在图像识别的任务中具有强大的特征学习能力。然而,利用监督的深度学习方法进行图像检索,需要大量已标注的数据,否则很容易出现过拟合的问题。为了解决这个问题,提出了一种新颖的基于深度自学习的图像哈希检索方法。首先,通过无监督的自编码网络学习到一个具有判别性的特征表达函数,这种方法降低了学习的复杂性,让训练样本不需要依赖于有语义标注的图像,算法被迫在大量未标注的数据上学习更强健的特征。其次,为了加快检索速度,抛弃了传统利用欧氏距离计算相似性的方法,而使用感知哈希算法来进行相似性衡量。这两种技术的结合确保了在获得更好的特征表达的同时,获得了更快的检索速度。实验结果表明,提出的方法优于一些先进的图像检索方法。  相似文献   

4.
在互联网上,大量的数据是由音视频等多媒体流量构成,特别是图像和视频占了绝大部分.由于视频流量检索可以转换成图像的检索,因此如何在互联网上海量数据中进行高效图像检索成了一个重要的研究领域.深度哈希方法在图像检索中可以有效提高检索速度和检索效率,故其在图像检索领域占据了重要的地位.针对大量图像数据无标注的特点,本文提出了适...  相似文献   

5.
深度卷积神经网络学习的图像特征表示具有明显的层次结构.随着层数加深,学习的特征逐渐抽象,类的判别性也逐渐增强.基于此特点,文中提出面向图像检索的深度汉明嵌入哈希编码方式.在深度卷积神经网络的末端插入一层隐藏层,依据每个单元的激活情况获得图像的哈希编码.同时根据哈希编码本身的特征提出汉明嵌入损失,更好地保留原数据之间的相似性.在CIFAR-10、NUS-WIDE基准图像数据集上的实验表明,文中方法可以提升图像检索性能,较好改善短编码下的检索性能.  相似文献   

6.
电网数据信息的准确检索在保障电网系统正常运行方面起着非常重要的作用。快速准确地从电网图像数据库中查找到与目标图像相似度高的图像可以有效地提高电网工作人员的工作效率,降低设备维护成本。针对传统检索方法检索精度低的问题,提出了一种基于时域-频域的端到端哈希编码方法。最后,在2个数据集上将该方法与最新的8种方法进行了比较,实验结果表明该方法是有效的。该方法创新性地结合了频域信息,以提高预测正确率,且结合了多任务学习和距圆损失来更加清晰地约束哈希编码任务的训练过程,使图像检索结果更加准确。  相似文献   

7.
目的 基于哈希编码的检索方法是图像检索领域中的经典方法。其原理是将原始空间中相似的图片经哈希函数投影、量化后,在汉明空间中得到相近的哈希码。此类方法一般包括两个过程:投影和量化。投影过程大多采用主成分分析法对原始数据进行降维,但不同方法的量化过程差异较大。对于信息量不均衡的数据,传统的图像哈希检索方法采用等长固定编码位数量化的方式,导致出现低编码效率和低量化精度等问题。为此,本文提出基于哈夫曼编码的乘积量化方法。方法 首先,利用乘积量化法对降维后的数据进行量化,以便较好地保持数据在原始空间中的分布情况。然后,采用子空间方差作为衡量信息量的标准,并以此作为编码位数分配的依据。最后,借助于哈夫曼树,给方差大的子空间分配更多的编码位数。结果 在常用公开数据集MNIST、NUS-WIDE和22K LabelMe上进行实验验证,与原始的乘积量化方法相比,所提出方法能平均降低49%的量化误差,并提高19%的平均准确率。在数据集MNIST上,与同类方法的变换编码方法(TC)进行对比,比较了从32 bit到256 bit编码时的训练时间,本文方法的训练时间能够平均缩短22.5 s。结论 本文提出了一种基于多位编码乘积量化的哈希方法,该方法提高了哈希编码的效率和量化精度,在平均准确率、召回率等性能上优于其他同类算法,可以有效地应用到图像检索相关领域。  相似文献   

8.
目的 医学图像检索在疾病诊断、医疗教学和辅助症状参考中发挥了重要作用,但由于医学图像类间相似度高、病灶易遗漏以及数据量较大等问题,使得现有哈希方法对病灶区域特征的关注较少,图像检索准确率较低。对此,本文以胸部X-ray图像为例,提出一种面向大规模胸片图像的深度哈希检索网络。方法 在特征学习部分,首先采用ResNet-50作为主干网络对输入图像进行特征提取得到初步特征,将该特征进行细化后获得全局特征;同时将初步特征输入构建的空间注意模块,该注意模块结合了3个描述符用于聚焦胸片图像中的显著区域,将该模块的输出进行细化得到局部特征;最后融合全局特征与局部特征用于后续哈希码优化。在哈希码优化部分,使用定义的二值交叉熵损失、对比损失和正则化损失的联合函数进行优化学习,生成高质量的哈希码用于图像检索。结果 为了验证方法的有效性,在公开的ChestX-ray8和CheXpert数据集上进行对比实验。结果显示,构建空间注意模块有助于关注病灶区域,定义特征融合模块有效避免了信息的遗漏,联合3个损失函数进行优化可以获得高质量哈希码。与当前先进的医学图像检索方法比较,本文方法能够有效提高医学图像检索的准确率...  相似文献   

9.
由于较低的检索时间和空间复杂度,哈希方法被广泛应用于大规模图像检索领域。提出深度多监督哈希(Deep Multi-Supervised Hashing,DMSH)方法来学习具有高度判别能力和紧凑的哈希编码,并进行有效的图像检索。设计一个新的卷积神经网络结构来产生相似性保留的哈希编码,用一个识别信号来增加类间距离,用一个验证信号来降低类间距离。同时,通过正则化的方式降低网络输出和二进制哈希编码之间的损失并使二进制哈希值在每一维上均匀分布使网络输出更接近离散的哈希值。在两个数据集上的实验证明了该方法能够快速编码任意新的图像并取得先进的检索结果。  相似文献   

10.
哈希方法由于低存储、高效率的特性而被广泛应用于遥感图像检索领域。面向遥感图像检索任务的无监督哈希方法存在伪标签不可靠、图像对的训练权重相同以及图像检索精度较低等问题,为此,提出一种基于深度多相似性哈希(DMSH)的遥感图像检索方法。针对优化伪标签和训练关注度分别构建自适应伪标签模块(APLM)和成对结构信息模块(PSIM)。APLM采用K最近邻和核相似度来评估图像间的相似关系,实现伪标签的初始生成和在线校正。PSIM将图像对的多尺度结构相似度映射为训练关注度,为其分配不同的训练权重从而优化深度哈希学习。DMSH通过Swin Transformer骨干网络提取图像的高维特征,将基于语义相似矩阵的伪标签作为监督信息以训练深度网络,同时网络在两个基于不同相似度设计的模块上实现交替优化,充分挖掘图像间的多种相似信息进而生成具有高辨识力的哈希编码,实现遥感图像的高精度检索。实验结果表明,DMSH在EuroSAT和PatternNet数据集上的平均精度均值较对比方法分别提高0.8%~3.0%和9.8%~12.5%,其可以在遥感图像检索任务中取得更高的准确率。  相似文献   

11.
为了进一步降低无监督深度哈希检索任务中的伪标签噪声,提出了一种等量约束聚类的无监督蒸馏哈希图像检索方法。该方法主要分为两个阶段,在第一阶段中,主要对无标签图像进行软伪标签标注,用于第二阶段监督哈希特征学习,通过所提等量约束聚类算法,在软伪标签标注过程中可以有效降低伪标签中的噪声;在第二阶段中,主要对学生哈希网络进行训练,用于提取图像哈希特征。通过所提出的无监督蒸馏哈希方法,利用图像软伪标签指导哈希特征学习,进一步提高了哈希检索性能,实现了高效的无监督哈希图像检索。为了评估所提方法的有效性,在CIFAR-10、FLICKR25K和EuroSAT三个公开数据集上进行了实验,并与其他先进方法进行了比较。在CIFAR-10数据集上,与TBH方法相比,所提方法检索精度平均提高12.7%;在FLICKR25K数据集上,与DistillHash相比,所提方法检索精度平均提高1.0%;在EuroSAT数据集上,与ETE-GAN相比,所提方法检索精度平均提高16.9%。在三个公开数据集上进行的实验结果表明,所提方法能够实现高性能的无监督哈希检索,且对各类数据均有较好的适应性。  相似文献   

12.
近年来,深度有监督哈希检索方法已成功应用于众多图像检索系统中。但现有方法仍然存在一些不足:一是大部分深度哈希学习方法都采用对称策略来训练网络,但该策略训练通常比较耗时,难以用于大规模哈希学习过程;二是哈希学习过程中存在离散优化问题,现有方法将该问题进行松弛,但难以保证得到最优解。为解决上述问题,提出了一种贪心非对称深度有监督哈希图像检索方法,该方法将贪心算法和非对称策略的优势充分结合,进一步提高了哈希检索性能。在两个常用数据集上与17种先进方法进行比较。在CIFAR-10数据集上48 bit条件下,与性能最好的方法相比mAP提高1.3%;在NUS-WIDE数据集上所有bit下,mAP平均提高2.3%。在两个数据集上的实验结果表明,该方法可以进一步提高哈希检索性能。  相似文献   

13.
当前主流的Web图像检索方法仅考虑了视觉特征,没有充分利用Web图像附带的文本信息,并忽略了相关文本中涉及的有价值的语义,从而导致其图像表达能力不强。针对这一问题,提出了一种新的无监督图像哈希方法——基于语义迁移的深度图像哈希(semantic transfer deep visual hashing,STDVH)。该方法首先利用谱聚类挖掘训练文本的语义信息;然后构建深度卷积神经网络将文本语义信息迁移到图像哈希码的学习中;最后在统一框架中训练得到图像的哈希码和哈希函数,在低维汉明空间中完成对大规模Web图像数据的有效检索。通过在Wiki和MIR Flickr这两个公开的Web图像集上进行实验,证明了该方法相比其他先进的哈希算法的优越性。  相似文献   

14.
现实生活中的图像大多具有多种标签属性。对于多标签图像,理想情况下检索到的图像应该按照与查询图像相似程度降序排列,即与查询图像共享的标签数量依次递减。然而,大多数哈希算法主要针对单标签图像检索而设计的,而且现有用于多标签图像检索的深度监督哈希算法忽略了哈希码的排序性能且没有充分地利用标签类别信息。针对此问题,提出了一种具有性能感知排序的深度监督哈希方法(deep supervised hashing with performance-aware ranking,PRDH),它能够有效地感知和优化模型的性能,改善多标签图像检索的效果。在哈希学习部分,设计了一种排序优化损失函数,以改善哈希码的排序性能;同时,还加入了一种空间划分损失函数,将具有不同数量的共享标签的图像划分到相应的汉明空间中;为了充分地利用标签信息,还鲜明地提出将预测标签用于检索阶段的汉明距离计算,并设计了一种用于多标签分类的损失函数,以实现对汉明距离排序的监督与优化。在三个多标签基准数据集上进行的大量检索实验结果表明,PRDH的各项评估指标均优于现有先进的深度哈希方法。  相似文献   

15.
针对基于深度哈希的图像检索中卷积神经网络(CNN)特征提取效率较低和特征相关性利用不充分的问题,提出一种融合稀疏差分网络和多监督哈希的新方法SDNMSH(sparse difference networks and multi-supervised hashing),并将其用于高效图像检索。SDNMSH以成对的图像作为训练输入,通过精心设计的稀疏差分卷积神经网络和一个监督哈希函数来指导哈希码学习。稀疏差分卷积神经网络由稀疏差分卷积层和普通卷积层组成。稀疏差分卷积层能够快速提取丰富的特征信息,从而实现整个网络的高效特征提取。同时,为了更加充分地利用语义信息和特征的成对相关性,以促进网络提取的特征信息能够更加有效地转换为具有区分性的哈希码、进而实现SDNMSH的高效图像检索,采用一种多监督哈希(MSH)函数,并为此设计了一个目标函数。在MNIST、CIFAR-10和NUS-WIDE三个广泛使用的数据集上进行了大量的对比实验,实验结果表明,与其他先进的深度哈希方法相比,SDNMSH取得了较好的检索性能。  相似文献   

16.
针对无监督跨模态检索任务中不能充分利用单个模态内的语义关联信息的问题,提出了一种基于图卷积网络的无监督跨模态哈希检索方法。通过图像和文本编码器分别获得两个模态的特征,输入到图卷积网络中挖掘单个模态的内部语义信息,将结果通过哈希编码层进行二值化操作后,与模态间的深度语义关联相似度矩阵进行对比计算损失,不断重构优化生成的二进制编码,直到生成样本对应的健壮哈希表达。实验结果表明,与经典的浅层方法和深度学习方法对比,该方法在多个数据集上的跨模态检索准确率均有明显提升。证明通过图卷积网络能够进一步挖掘模态内的语义信息,所提模型具有更高的准确性和鲁棒性。  相似文献   

17.
针对传统方法在面对大量肺部数据时检索效率不高的问题,提出了一种基于有监督哈希的肺结节CT图像检索方法。首先,通过图像预处理建立肺结节图像库,并从灰度、形态、纹理方面提取图像多特征;然后,利用监督信息构造哈希函数,将多特征映射为低维哈希码;最后,根据设计的自适应权重计算图像相似度,并返回相似的肺结节图像。实验结果表明,本文方法能有效地实现肺结节CT图像的快速检索,对查询病灶的良恶性分类达到89.45%。  相似文献   

18.
Multimedia Tools and Applications - Hashing approaches have got a great attention because of its efficient performance for large-scale images. This paper, aims to propose a deep hashing method...  相似文献   

19.
Learning-based hashing methods are becoming the mainstream for large scale visual search. They consist of two main components: hash codes learning for training data and hash functions learning for encoding new data points. The performance of a content-based image retrieval system crucially depends on the feature representation, and currently Convolutional Neural Networks (CNNs) has been proved effective for extracting high-level visual features for large scale image retrieval. In this paper, we propose a Multiple Hierarchical Deep Hashing (MHDH) approach for large scale image retrieval. Moreover, MHDH seeks to integrate multiple hierarchical non-linear transformations with hidden neural network layer for hashing code generation. The learned binary codes represent potential concepts that connect to class labels. In addition, extensive experiments on two popular datasets demonstrate the superiority of our MHDH over both supervised and unsupervised hashing methods.  相似文献   

20.
目的 基于深度学习的图像哈希检索是图像检索领域的热点研究问题。现有的深度哈希方法忽略了深度图像特征在深度哈希函数训练中的指导作用,并且由于采用松弛优化,不能有效处理二进制量化误差较大导致的生成次优哈希码的问题。对此,提出一种自监督的深度离散哈希方法(self-supervised deep discrete hashing,SSDDH)。方法 利用卷积神经网络提取的深度特征矩阵和图像标签矩阵,计算得到二进制哈希码并作为自监督信息指导深度哈希函数的训练。构造成对损失函数,同时保持连续哈希码之间相似性以及连续哈希码与二进制哈希码之间的相似性,并利用离散优化算法求解得到哈希码,有效降低二进制量化误差。结果 将本文方法在3个公共数据集上进行测试,并与其他哈希算法进行实验对比。在CIFAR-10、NUS-WIDE(web image dataset from National University of Singapore)和Flickr数据集上,本文方法的检索精度均为最高,本文方法的准确率比次优算法DPSH(deep pairwise-supervised hashing)分别高3%、3%和1%。结论 本文提出的基于自监督的深度离散哈希的图像检索方法能有效利用深度特征信息和图像标签信息,并指导深度哈希函数的训练,且能有效减少二进制量化误差。实验结果表明,SSDDH在平均准确率上优于其他同类算法,可以有效完成图像检索任务。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号