首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
杜东舫  徐童  鲁亚男  管楚  刘淇  陈恩红 《软件学报》2018,29(12):3747-3763
互联网的蓬勃发展,在为用户提供便利的同时,其海量信息也为用户选择造成了困难,基于用户理解的信息推荐服务正成为应时之需.相较于面向单个用户信息的传统推荐技术,基于社交信息的推荐技术通过引入影响力建模,可以更真实地还原用户属性及行为.然而,已有的社交推荐技术往往停留于对用户影响的笼统归纳,并没有对其内在机制进行清晰分类和量化.针对这一问题,通过对用户评分行为中的信任关系进行分析,着重研究了信任用户间接影响用户偏好和直接影响用户评分两种不同机制,进而提出了基于用户间信任关系融合建模的概率矩阵分解模型TPMF,从而实现对上述两种机制的有效融合.在此基础之上,针对不同用户受两种机制影响权重不同的问题,通过借助评分相关性对用户进行聚类并映射到相应权重,实现了用户模型参数的个性化选择.公开数据集的多项实验结果表明:提出的TPMF及其衍生算法在各项指标上优于现有代表性算法,验证了所提出的影响机制及技术框架的有效性.  相似文献   

2.
研究表明在社会网络推荐中添加明确的社会信任明显提高了评分的预测精度,但现实生活中很难得到用户之间明确的信任评分。之前已有学者研究并提出了信任度量方法来计算和预测用户之间的相互作用及信任评分。提出了一种基于Hellinger距离的社会信任关系提取方法,通过描述二分网络中一侧节点的f散度来进行用户相似度计算。然后结合用户分组信息,将提取的隐式社会关系加入改进的概率矩阵分解中,提出一种新的基于用户组群和隐性社会关系的概率矩阵分解算法(CH-PMF)。实验结果表明,提出的模型与应用实际用户明确表示的信任分数推荐结果表现几乎相同,且在无法提取到明确信任数据时,CH-PMF有着比其他传统算法更好的推荐效果。  相似文献   

3.
针对社交网络推荐系统中存在的数据稀疏、冷启动等问题,提出了一种结合特征传递和概率矩阵分解(TPMF)的社交网络混合型推荐算法。以概率矩阵因式分解(PMF)方法作为推荐框架,不仅考虑了用户信任网络,还结合推荐项目之间的关联关系、用户项目评分矩阵和自适应权重来权衡个人潜在特征和社交潜在特征对用户的影响程度。将社交网络中用户间的信任特征传递引入推荐系统中作为推荐的有效依据。实验结果表明,与基于用户的协同过滤(UBCF)、TidalTrust、PMF和SoRec算法相比,TPMF的平均绝对误差(MAE)直接相减后降低了4.1%到20.8%,均方根误差(RMSE)降低了3.3%到18.5%。在冷启动问题中,与上述四种算法相比,TPMF的平均绝对误差相减后降低了1.6%到14.7%,均方根误差降低了约1.2%到9.7%,能有效缓解冷启动问题,提高算法的鲁棒性。  相似文献   

4.
田保军  杨浒昀  房建东 《计算机应用》2019,39(10):2834-2840
针对推荐精度不准确、数据稀疏、恶意推荐的问题,提出融合信任基于概率矩阵分解(PMF)的新推荐模型。首先,通过建立基于信任的协同过滤模型(CFMTS)将改进的信任机制融入到协同过滤推荐算法中。信任值通过全局信任及局部信任计算获得,其中局部信任利用了信任传播机制计算用户的直接信任值和间接信任值得到,全局信任采用信任有向图的方式计算得到。然后,将信任值与评分相似度融合以解决数据稀疏、恶意推荐的问题。同时,将CFMTS融入到PMF模型中以建立新的推荐模型——融合信任基于概率矩阵分解模型(MPMFFT),通过梯度下降算法对用户特征向量和项目特征向量进行计算以产生预测评分值,进一步提高推荐系统的精准度。通过实验将提出的MPMFFT与经典的PMF、社交信息的矩阵分解(SocialMF)、社交信息的推荐(SoRec)、加权社交信息的推荐(RSTE)等模型进行了结果的对比和分析,在公开的真实数据集Epinions上MPMFFT的平均绝对误差(MAE)和均方根误差(RMSE)比最优的RSTE模型分别降低2.9%和1.5%,同时在公开的真实数据集Ciao上MPMFFT的MAE和RMSE比最优的SocialMF模型分别降低1.1%和1.8%,结果证实了模型能在一定程度上解决数据稀疏、恶意推荐问题,有效提高推荐质量。  相似文献   

5.
在概率矩阵分解(PMF)模型拟合之后,评分较少用户的特征趋近于先验分布的平均值,导致对其评分预测接近物品的平均评分.受约束概率矩阵分解(CPMF)未考虑到不同评分系统的整体差异以及数据集内部用户与物品存在的固有属性.针对以上问题,提出将传统矩阵分解中的用户和物品偏置项以及全局平均分结合受约束概率矩阵分解来建立新的矩阵分解算法.算法利用整体平均分衡量不同评分系统,在采用偏置来表示用户以及物品之间相互独立的属性的同时,引入约束使行为相近用户拥有相近的用户偏置,从而提高预测精度.在两个真实数据集上的实验结果表明,该算法相对于PMF和CPMF算法预测精度得到了提高.  相似文献   

6.
贝叶斯概率矩阵分解方法因较高的预测准确度和良好的可扩展性,常用于个性化推荐系统,但其推荐精度会受初始评分矩阵稀疏特性的影响.提出一种基于广义高斯分布的贝叶斯概率矩阵分解方法GBPMF(generalized Gaussian distribution Bayesian PMF),采用广义高斯分布作为先验分布,通过机器学习自动选择最优的模型参数,并基于Gibbs采样进行高效训练,从而有效缓解矩阵的稀疏性,减小预测误差.同时考虑到评分时差因素对预测过程的影响,在采样算法中添加时间因子,进一步对方法进行优化,提高预测精度.实验结果表明:GBPMF方法及其优化方法GBPMF-T对非稀疏矩阵和稀疏矩阵均具有较高的精度,后者精度更高.当矩阵非常稀疏时,传统贝叶斯概率矩阵分解方法的精度急剧降低,而该方法则具有较好的稳定性.  相似文献   

7.
针对个性化推荐过程中高维稀疏性问题,本文提出一种将奇异值分解技术和带偏置概率矩阵分解相结合的推荐方法。 首先利用SVD算法初始化用户项目潜在因子向量,避免因随机赋值而使得函数陷入局部最优解,接着将用户项目的偏置信息融入到概率矩阵分解算法中,同时为了提升训练速度和推荐精度,通过动量加速的迷你批量梯度下降(mini Batch Gradient Descent,miniBGD)来训练,最后利用分解后的两个低维矩阵对原矩阵中的未知评分进行预测,在三个公开数据集的实验结果表明,本文提出的算法相对于传统的算法能够有效的提高推荐精度,进一步缓解由数据高维稀疏性带来的推荐质量不高的问题。  相似文献   

8.
彭行雄  肖如良  张桂刚 《计算机应用》2015,35(12):3497-3501
针对推荐系统中概率矩阵分解模型(PMF)泛化能力(对新用户和物品的推荐性能)较差、预测准确性不高的问题,提出一种新的基于自适应提升的概率矩阵分解算法(AdaBoostPMF)。该算法首先为每个样本分配样本权重;然后根据PMF中的每一轮随机梯度下降法学习用户和物品特征向量,并计算总体预测误差均值和标准差。从全局的角度利用AdaBoost思想自适应调整样本权重,使算法更注重学习预测误差较大的样本;最后对预测误差分配样本权重,让用户和物品特征向量找到更合适的优化方向。相比传统的PMF算法,AdaBoostPMF算法能够将预测精度平均提高约2.5%。实验结果表明,该算法通过加权预测误差较大的样本,能够较好地拟合用户特征向量和物品特征向量,提高预测精度,可以有效地应用于研究个性化推荐。  相似文献   

9.
近年来,群组推荐由于其良好的实用价值得到了广泛关注.然而,已有的群组推荐方法大多都是根据分析用户对服务的评分矩阵直接将个体用户的推荐结果或个体用户偏好进行聚合,没有综合地考虑用户-群组-服务这三者间的联系,导致群组推荐效果欠佳.受潜在因子模型与状态空间模型启发,结合评分矩阵、服务描述文档以及时间因素,共同分析用户-群组-服务间的联系,提出了一种基于动态卷积概率矩阵分解的群组推荐方法.该方法首先利用基于卷积神经网络的文本表示方法获取服务潜在特征模型的先验分布;然后,将状态空间模型与概率矩阵分解模型相结合,获得用户潜在偏好向量与服务特征向量;之后,对用户偏好向量运用聚类算法来发现潜在的群组;最终,对群组中的用户偏好采取均值策略融合成群组偏好向量,并与服务特征向量共同生成群组对服务的评分,实现群组推荐.通过在MovieLens数据集上与同类方法进行对比实验,发现所提方法的推荐有效性与精确性上更具有优势.  相似文献   

10.
近年来随着在线教育中试题资源数量爆炸式的增长,学生很难在海量的试题资源中找到合适的试题,因此面向学生的试题推荐方法应运而生;然而,传统的基于概率矩阵分解的试题推荐方法没有考虑学生的知识点掌握信息,导致推荐结果准确率低,为此,提出一种基于联合概率矩阵分解的个性化试题推荐方法。首先,通过认知诊断模型得到的学生知识点掌握信息;然后,结合学生、试题和知识点三者信息进行联合概率矩阵分解;最后,根据难度范围进行试题推荐。实验结果表明,与其他传统推荐方法相比,所提方法在不同难度试题推荐的准确率上取得了较好的推荐结果。  相似文献   

11.
王东  陈志  岳文静  高翔  王峰 《计算机应用》2015,35(9):2574-2578
针对现有的基于用户显式反馈信息的推荐系统推荐准确率不高的问题,提出了一种基于显式与隐式反馈信息的概率矩阵分解推荐方法。该方法综合考虑了显示反馈信息和隐式反馈信息,在对用户信任关系矩阵和商品评分矩阵进行概率分解的同时加入了用户评分记录的隐式反馈信息,优化训练模型参数,为用户提供精确的预测评分。实验结果表明,该方法可以有效地获得用户偏好,产生大量的准确度高的推荐。  相似文献   

12.
基于梯度下降矩阵分解模型的协同过滤推荐算法需要利用正则化技术对问题加以约束。损失函数中的正则化参数能够提高模型的预测精度;防止训练过拟合;并可以在二者间调节;使二者平衡。提出了一种多正则化参数的方法;根据用户的活跃度或者项目的流行度确定正则化参数的值;能在不同评分数量的用户或者项目上防止训练过拟合;同时可以得到更好的预测精度。实验结果验证了算法的正确性和有效性。  相似文献   

13.
虽然目前旅游者可以利用Web搜索引擎来选择旅游景点,但往往难以获得较好符合自身需要的旅游规划.而旅游推荐系统是解决上述问题的有效方式.一个好的旅游推荐模型应具有个性化并能考虑用户时间和费用的限制.调研表明,用户在选择旅游景点时,目的地与用户常居地的距离常常是一个需要考虑的问题.因为旅行距离往往可以间接地反映了时间和费用的影响.于是,在贝叶斯模型和概率矩阵分解模型的基础上,提出一个旅行距离敏感的旅游推荐模型(geographical probabilistic matrix factorization, GeoPMF).主要思想是基于每个用户的旅游历史,推算出一个最偏好的旅游距离,并作为一种权重,添加到传统的基于概率矩阵分解的推荐模型中.在携程网站的旅游数据集上的实验表明,与基准方法相比,GeoPMF 的RMSE(root mean square error)可以降低近10%;与传统概率矩阵分解模型(PMF)相比,通过考虑距离因子,RMSE平均降幅近3.5%.  相似文献   

14.
位置服务作为一种信息共享平台,在方便人们交流和共享信息的同时,也因为用户数量的不断增加,而面临着严重的信息过载问题.如何利用推荐技术对信息进行过滤和筛选,帮助用户在位置服务中发现有价值的信息成为近年来研究的热点.但目前已有的推荐算法,在只有消费记录这种隐性数据情况下,针对用户较少活动区域或新用户的推荐效率较低,无法最大化挖掘隐性数据所带的信息.针对以上问题,结合位置服务平台的特点,针对用户冷启动问题,提出了一种结合协同概率矩阵分解与迭代决策树(gradient boosting decision tree, GBDT)的推荐算法.该方法首先使用多层协同概率矩阵分解在多个维度上得到用户潜在特征,然后使用GBDT学习算法对特征和标签进行训练得到用户对项目的偏好,最后使用考虑约束问题的top-N推荐产生推荐列表.在真实数据集上的实验结果表明,与目前较为流行的方法相比,提出的方法能在准确率、F1值上取得较好的结果,能更好地缓解位置服务中的冷启动问题.  相似文献   

15.
一种信任关系强度敏感的社会化推荐算法   总被引:4,自引:0,他引:4  
为了进一步提高推荐算法的准确率,更好地对用户间的信任关系进行建模,首先提出了一种信任关系强度敏感的社会化推荐算法(StrengthMF).与以往的算法相比,该算法假设建立信任关系的两个用户之间并不一定存在着相似的兴趣爱好.在推荐过程中,StrengthMF算法通过共享的潜在用户特征空间来对信任关系强度和用户兴趣进行建模,通过进一步识别出那些与目标用户有着共同爱好的朋友来对求解的过程进行优化.为了验证算法所估计出的信任关系强度的准确性,接着又在SocialMF算法的基础上,提出了一种使用所估计的信任关系对其重新训练和学习的InfluenceMF算法.实验结果表明,与目前较为流行的方法相比,新方法能在RMSE和MAE上取得更好的推荐结果,其所推导出的信任关系强度能进一步提高已有推荐算法的性能.  相似文献   

16.
时间序列数据是一种数据属性随时间变化的高维数据类型,反映了用户兴趣的动态变化。基于时序数据的推荐系统利用用户的行为时间提高推荐的准确性,但是不适用于大规模数据集的推荐任务,矩阵分解方法是处理高维数据集时常用的降维方法。为此,提出一种基于时序模型和矩阵分解的推荐算法。基于该方法,首先利用矩阵分解提取原始时序数据的特征,然后通过时序模型挖掘特征的趋势,最后根据预测的特征得到预测结果并进行推荐。实验结果表明:所提出的算法与已有的推荐算法相比,在均方根误差(Root Mean Square Error, RMSE)和平均准确率(Mean Average Precision, MAP)两个指标上均有较好表现,且适用于大规模数据的推荐任务。  相似文献   

17.
协同过滤推荐算法是目前构建推荐系统最为成功的算法之一,它利用已知的一组用户对物品喜好数据来对推测用户对其他物品的喜好,其中,能够直接刻画用户与项目潜在特征的矩阵分解模型和通过分析物品或者项目间相似度的邻域模型是研究的热点.针对这两个模型存在的不足,提出了一种将邻域模型与矩阵分解模型有效结合的方法,进而构建了一个改进的协同过滤推荐算法,提高了预测准确性.实验结果验证了改进算法的正确性与有效性.  相似文献   

18.
在推荐系统中,因评分尺度差异而造成的偏差问题一直影响着协同过滤算法的预测准确性。其中针对矩阵因子分解算法中的偏差问题,本文提出一种基于高阶偏差的因子分解机算法。该算法首先按照评分偏差的现实特征对用户和项目进行划分,再将偏差类别作为辅助特征集成到因子分解机中,实现了评分预测中不同偏差用户、项目的高阶交互。在Movielens数据集上的实验结果表明,相比传统矩阵因子分解算法,本文提出的算法具有更低的预测误差,体现了其更好的推荐性能。  相似文献   

19.
张笑虹  张奇志  周亚丽 《计算机应用研究》2020,37(5):1303-1305,1316
针对推荐系统中的评分预测问题,在矩阵分解的基础上实现了一种修正的二项矩阵分解算法。假设用户对物品的评分基于二项分布,由于用户的评分习惯存在差异,物品的受欢迎程度也存在差异,导致用户—物品评分矩阵存在偏置量。通过引入偏置量对矩阵分解和评分预测进行修正,采用最大后验估计建模,并通过随机梯度下降算法优化模型。实验结果表明,在MovieLens 100K数据集上,引入评分偏置的二项矩阵分解算法在推荐精度、离线计算时间等方面均优于传统的二项矩阵分解算法。  相似文献   

20.
针对现有概率矩阵分解(PMF)技术的个性化推荐系统在采用社交网络中信任信息时常常忽视项目相关描述文档信息的问题,提出一种融合用户信任和通过卷积网络以获取项目描述等信息的PMF模型.首先,利用用户偏好信息和行为轨迹信息构建一种新的信任网络;然后,通过卷积神经网络从项目描述文档中提取项目潜在的特征向量;最后,在概率矩阵分解过程中同时利用评分数据、信任网络中用户的信任信息和项目的描述信息,计算用户和项目的潜在特征向量以预测评分并进行个性化推荐.为验证算法的有效性,选择3种算法在4个数据集上进行对比,实验结果表明所提出的算法在推荐精确度和鲁棒性方面优于其他3种算法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号