共查询到15条相似文献,搜索用时 49 毫秒
1.
针对静水中作摆动推进的水翼,采用用非定常涡格法对其进行水动力分析,并进行了静水中的相关推进实验。在理论计算中作者提出了一种非线性尾涡面模型处理办法,并将这种尾涡面模型下的计算结果与试验结果进行了对比,对比表明在计算中采用这种非线性尾涡面效果理想。最后,针对提出的这种非线性尾涡模型处理方法展开了进一步的探讨,并按此计算了有来流工况下的尾涡面形状,给出了计算结果。 相似文献
2.
3.
为判断动床弯道中二次流和涡结构模型的模拟精度,基于Barbhuiya的90°水平弯道冲刷水槽试验,比较了大涡模型(LES)和RNG k-ε模型对弯道冲淤过程中床面形态模拟的精确程度,发现LES模型结果更加精确。基于LES模型模拟结果,通过使用Q准则识别二次流产生的底部涡结构,分析了涡结构对床面冲刷淤积的定量影响。结果表明:在清水冲刷动床弯道的过程中,Q值介于30~50之间时底部涡趋于稳定存在,Q值大于50时会明显影响床面冲淤;强大稳定的涡结构会使床面形态逐渐稳定,床面冲刷和淤积速率趋于一个定值,床面冲刷和淤积速率不超过2×10-6 m/s。进一步分析弯道内剪切流速与床面形态的关系,发现弯道内存在两类高剪切流速区域,当第一类区域剪切流速值大于第二类时,床面会出现深度大于0.10 m的明显冲刷坑。研究结果可为弯道中冲淤平衡和床面形态模拟提供参考。 相似文献
4.
如何准确估计干旱区的实际蒸散发数值是当前研究的热点和难点。为探索新疆区域蒸散发计算的适宜方法,采用MOD-16A2和AET数据集,对Fisher根据Priestley-Taylor和植物生理学理论建立的模型(PT-Fi模型)进行了验证,并通过模型对新疆地区和南北疆区域2001-2010年的实际蒸散发量及其组分进行了计算。结果表明:PT-Fi模型能较好地模拟区域内实际蒸散发量;新疆地区土壤蒸发的年均占比为69.3%,植被蒸腾的年均占比为29.64%,其余为冠层截流蒸发;南疆的蒸散比约为1∶3,北疆的约为1∶2。 相似文献
5.
依据鸳鸯池水库1959-2015年实测入库年径流量系列,利用年代际径流量平均值、径流年内分配集中度分析了入库年径流量年际变化和年内分配特征,同时分别采用基本GM(1,1)、改进GM(1,1)以及R/S分析法与基本GM(1,1)灰色模型相结合的方法预测了入库年径流量。结果表明:入库年径流量时间序列有明显分形特征,H指数为0. 922;径流量时间序列具有状态持续性,即未来年径流量变化趋势与过去一致;年径流量系列长期记忆性以41 a为周期;经R/S分析后采用基本GM(1,1)灰色模型预测得出2013、2014、2015年入库径流量分别为3. 60×108、2. 97×108、3. 67×108m3,与实测值相比,相对误差分别为20. 69%、8. 97%、8. 10%,较基本GM(1,1)、改进GM(1,1)灰色模型的预测精度高。据此预测得出2020年入库径流量将比2015年增加8. 99%。 相似文献
6.
《水动力学研究与进展(B辑)》2017,(2)
The cavitation shedding flow around a 3-D Clark-Y hydrofoil is simulated by using an improved filter-based model(FBM) and a mass transfer cavitation model with the consideration of the maximum density ratio effect between the liquid and the vapor. The unsteady cloud cavity shedding features around the Clark-Y hydrofoil are accurately captured based on an improved FBM model and a suitable maximum density ratio. Numerical results show that the predicted cavitation patterns and evolutions compare well with the experimental visualizations, and the prediction errors of the time-averaged lift coefficient, drag coefficient and Strouhal number St for the cavitation number σ= 0.8, the angle of attack α= 8° at a Reynolds number Re= 7 ×10~5 are only 3.29%, 2.36% and 9.58%, respectively. It is observed that the cavitation shedding flow patterns are closely associated with the vortex structures identified by the Q-criterion method. The predicted cloud cavitation shedding flow shows clearly three typical stages:(1) Initiation of the attached sheet cavity, the growth toward the trailing edge.(2) The formation and development of the re-entrant jet flow.(3) Large scale cloud cavity sheds downstream. Numerical results also indicate that the non-uniform adverse pressure gradient is the main driving force of the re-entrant jet, which results in the U-shaped cavity and the 3-D bubbly structure during the cloud cavity shedding. 相似文献
7.
该文基于均质多相流理论,采用RNG k-模型和修正系数Zwart空化模型对液氢绕NACA0015水翼非定常空化流动进行数值模拟。模拟了非定常空泡云的生长、断裂、涡状空化团脱落和破裂的周期性过程,模拟中考虑了热力学效应,并分析了温度对空泡流场特性的影响。研究结果表明:在相同空化数和来流速度下,空泡周期随温度增高而变长,升、阻力系数的波动周期随温度增高而增加,但其时均值的随温度增高而减小。 相似文献
8.
水力阻尼是影响流激振动幅值预测精度的关键参数,是水力机械流激振动领域研究的热点问题。非对称尾部形状水翼在涡激振动和升力的联合作用下,振动响应的平衡位置具有时变特性,采用传统自由振动衰减法获得的水力阻尼比误差大幅度增加,甚至失效。为了克服传统自由振动衰减法应用局限,本文借助双向流固耦合数值模拟方法获得流激振动响应位移,通过带通滤波结合平衡位置校准,研究了动水环境中对称和非对称尾部形状水翼水力阻尼的识别方法。结果表明,数值模拟可较准确获取低阶结构模态和尾部旋涡脱落频率,相比实验结果,低阶弯曲模态频率、低阶扭曲模态频率和15 m/s流速下脱落涡频率最大偏差分别为7.58%、2.90%和1.42%;带通滤波可消除周期性涡激振动对响应信号的影响,水力阻尼比识别偏差度从7.51%下降到1.92%;平衡位置校准方法可采用多项式拟合法、线性插值法和光滑样条曲线法,所对应的水力阻尼比识别偏差度分别为34.93%、3.53%和0.16%。工程上,可优先推荐滤波结合线性插值法,在需要高精度水力阻尼比的场合,则必须采用滤波结合光滑样条曲线法。 相似文献
9.
Unsteady cavitating turbulent flow around twisted hydrofoil is simulated with Zwart cavitation model combined with the filter-based density correction model(FBDCM).Numerical results simulated the entire process of the 3-D cavitation shedding including the re-entrant jet and side-entrant jet dynamics and were compared with the available experimental data.The distribution of finite-time Lyapunov exponent(FTLE) was used to analyze the 3-D behavior of the re-entrant jet from the Lagrangian viewpoint,which shows that it can significantly influence the particle trackers in the attached cavity.Further analysis indicates that the different flow behavior on the suction side with different attack angle can be identified with Lagrangian coherent structures(LCS).For the area with a large attack angle,the primary shedding modifies the flow pattern on the suction side.With the decrease in attack angle,the attached cavity tends to be steady,and LCS A is close to the upper wall.A further decrease in attack angle eliminates LCS A in the boundary layer.The FTLE distribution also indicates that the decreasing attack angle induces a thinner boundary layer along the foil surface on the suction side. 相似文献
10.
对二维翼空化流动的数值模拟 总被引:5,自引:2,他引:3
应用二维不可压缩N-S方程结合改进VOF空化模型模拟了NACA66二维翼的空化流动.数值计算中采用SST k-ω湍流模型计算了不同空泡数下定常稳态空化发生时水翼吸力面的压力分布,并与实验结果进行对比,发现空化末端压力梯度计算值明显大于实验值,而且压力有明显突增,通过修正空化模型中的经验参数较好地解决了这个问题.应用SST-SAS湍流模型及修正的经验参数较好地模拟了低空泡数时非定常云空泡的脱落现象,该数值方法对非稳态空化的发展,脱落过程及其频率的预报结果与实验结果吻合良好. 相似文献
11.
方柱绕流流场的RNG方法模拟研究 总被引:4,自引:0,他引:4
基于RNGk ε湍流模型,使用FLUENT6.0软件对方柱绕流流场进行了数值模拟。采用非交错网格的有限体积法求解二维不可压N S方程,计算结果与Durao等人的实验数据进行比较,结果表明,RNGk ε湍流模型可以成功地模拟绕方柱的不稳定、非定常和剧烈分离流动.对于与时间相关的大尺度运动—旋涡脱落的尾流的详细结构,能够给出真实的反映。 相似文献
12.
绕二维对称水翼的通气空泡流数值研究 总被引:1,自引:0,他引:1
本文通过有限体积离散方法求解Reynolds平均Navler—Stokes方程,采用VOF法追踪气一液两相交界面。研究了在高压低速来流,即本质上不发生自然空化的条件下,绕二维对称水翼的非定常通气空泡流动。分析了物理参数——通气方向角和攻角,对通气空泡外形、稳定性及水动力参数的影响。计算结果表明:在通气空泡的形成过程中,通气方向角存在着一个临界值,使得空泡形态由片状空泡过渡到超空泡;特定的参数组合将会诱发空泡表面出现波动现象。而且,当攻角做周期性变化时,水动力参数的变化也随之满足周期性规律,且出现阶段性振荡。 相似文献
13.
《水动力学研究与进展(B辑)》2016,(5)
The supercavitation has attracted a growing interest because of its potential for high-speed vehicle maneuvering and drag reduction. To better understand the reverse flow characteristics of a water-vapor mixture in supercavitating flows around a hydrofoil, a numerical simulation is conducted using a unified supercavitation model, which combines a modified RNG k-? turbulence model and a cavitation one. By comparing the related experimental results, the reverse motion of the water-vapor mixture is found in the cavitation area in all supercavitation stages. The inverse pressure gradient leads to reverse pressure fluctuations in the cavity, followed by the reverse motion of the water-vapor two-phase interface. Compared with the water-vapor mixture area at the back of the cavity, the pressure in the vapor area is inversely and slowly reduced,a higher-pressure gradient occurs near the cavity boundary. 相似文献
14.
《水动力学研究与进展(B辑)》2015,(5)
The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio ? l /? v, clip promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency St for the cavitation number ?= 0.8, the angle of attack, ?= 8o, at a Reynolds number Re= 7 ?105 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge(TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge(LE) cavity to produce the shedding flow. 相似文献