共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
基于隐蔽的系统成败型数据的元件可靠性的极大似然估计和区间估计 总被引:4,自引:1,他引:3
考虑由3个独立工作的成败型元件组成的串联系统,利用隐蔽的系统寿命试验数据求元件可靠性的极大似然估计和区间估计,给出了数值例子。 相似文献
4.
威布尔分布的环保型电子节能灯寿命的极大似然估计 总被引:1,自引:0,他引:1
提出了一种利用改进的极大似然估计法对基于威布尔分布的环保型电子节能灯寿命数据进行分析的方法.该方法利用加速寿命实验获取环保型电子节能灯使用寿命的数据,利用统计学的方法和威布尔分布模型,实现高应力下的实验时间的等效折算.采用改进的极大似然估计,有益于对环保型电子节能灯的寿命数据进行分析. 相似文献
5.
讨论了在二项分布场合关于成功率的不同无信息先验分布下的Bayes估计,并从Bayse风险的角度对它们进行了比较。 相似文献
6.
通过对分布函数进行变换,使变换后的函数成为凹函数,利用凹函数性质给出了各检测时刻失效概率的Bayes估计,进而得到了产品可靠性指标的估计。最后,通过对实际数据进行计算,验证了方法的稳定性。 相似文献
7.
高可靠性产品的可靠性试验很难获得样品失效的数据,可靠性参数估计涉及无失效数据分析,Bayes方法是处理无失效数据分析的有力方法。多层Bayes参数估计涉及到Beta函数比的积分。利用Gamma函数比不等式,导出Beta函数比不等式及Beta函数比的积分不等式,证明了无失效数据下失效概率的EBayes估计与多层Bayes估计渐近相等,且给出多层Bayes估计值小于EBayes估计值的一个充分条件。 相似文献
8.
9.
本文讨论下列线性模型Ym×n=βm×pXp×n\+βm×n其中ε服从一类特殊的矩阵椭球分布,特征矩阵为。给出了在Σ>0已知;V>0,已知,Σ=σ2In,σ2>0未知;V>0未知三种情形下参数矩阵β的Bayes估计。 相似文献
10.
11.
Point estimation for the scale and location parameters of the extreme-value (Type I) distribution by linear functions of order statistics from Type II progressively censored samples is investigated. Four types of linear estimators are considered: the best linear unbiased (BLU), an approximation to the BLU, unweighted regression, and a linearized maximum likelihood. Linear transformations of the estimators are also considered for reducing mean square errors. Exact bias, variance, and mean square error comparisons of the estimators are made for several censoring patterns. Since the natural logarithms of Weibull variates have extreme-value distributions, the investigation is applicable to estimation for Weibull distributions. 相似文献
12.
Strength of Materials - This paper considers both likelihood and Bayesian estimations of a constant-stress partially accelerated life test model with type-I censored data from the linear failure... 相似文献
13.
考虑一类回归模型,在右删失数据下构造了参数的最小二乘估计和加权最小二乘估计,证明了估计量具有渐近正态性。模拟结果表明加权最小二乘估计比最小二乘估计有优良的性质。 相似文献
14.
讨论了一类半参数回归模型y =x′β+g(t′α) +e .假定y被随机变量T右侧截尾 ,T与y独立 ,T~G。在G已知和未知两种情况下 ,构造了α、β和g(·) 的强相合估计 相似文献
15.
A. Clifford Cohen 《技术计量学》2013,55(4):579-588
This paper is concerned with the two-parameter Weibull distribution which is widely employed as a model in life testing. Maximum likelihood equations are derived for estimating the distribution parameters from (i) complete samples, (ii) singly censored samples and (iii) progressively (multiple) censored samples. Asymptotic variance-covariance matrices are given for each of these sample types. An illustrative example is included. 相似文献
16.
The purpose of model calibration is to make the model predictions closer to reality. The classical Kennedy–O’Hagan approach is widely used for model calibration, which can account for the inadequacy of the computer model while simultaneously estimating the unknown calibration parameters. In many applications, the phenomenon of censoring occurs when the exact outcome of the physical experiment is not observed, but is only known to fall within a certain region. In such cases, the Kennedy–O’Hagan approach cannot be used directly, and we propose a method to incorporate the censoring information when performing model calibration. The method is applied to study the compression phenomenon of liquid inside a bottle. The results show significant improvement over the traditional calibration methods, especially when the number of censored observations is large. Supplementary materials for this article are available online. 相似文献
17.
Iterative procedures are given for joint maximum-likelihood estimation, from complete and censored samples, of the three parameters of Gamma and of Weibull populations. For each of these populations, the likelihood function is written down, and the three maximum-likelihood equations are obtained. In each case, simultaneous solution of these three equations would yield joint maximum-likelihood estimators for the three parameters. The iterative procedures proposed to solve the equations are applicable to the most general case, in which all three parameters are unknown, and also to special cases in which any one or any two of the parameters are known. Numerical examples are worked out in which the parameters are estimated from the first m failure times in simulated life tests of n items (m ≤ n), using data drawn from Gamma and Weibull populations, each with two different values of the shape parameter. 相似文献
18.
19.
20.
A simple, unbiased estimator, based on a censored sample, has been proposed by Rain [1] for the scale parameter of the Extreme-value distribution. This estimator was shown to have high efficiency and to be approximately distributed as a chi-square variable if substantial censoring occurs. Further small sample and asymptotic properties of this estimator are considered in this paper. The estimator is modified so that it is more applicable to the complete sample case and a close chi-square approximation is established for all cases. The estimator is also shown to be related to the maximum likelihood estimator. 相似文献