首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
The field of quantitative analysis and subsequent mapping of the cerebral cortex has developed rapidly. New powerful tools have been applied to investigate large regions of complex folded gyrencephalic cortices in order to detect structural transition regions that might partition different cortical fields of disjunct neuronal functions. We have developed a new mapping approach based on axoarchitectonics, a method of cortical visualization that previously has been used only indirectly with regard to myeloarchitectonics. Myeloarchitectonic visualization has the disadvantage of producing strong agglomerative effects of closely neighbored nerve fibers. Therefore, single and neurofunctional-relevant parameters such as axonal branchings, axon areas, and axon numbers have not been determinable with satisfying precision. As a result, different staining techniques had to be explored in order to achieve a suitable histologic staining for axon visualization. The best results were obtained after modifying the Naoumenko-Feigin staining for axons. From these contrast-rich stained histologic sections, videomicroscopic digital image tiles were generated and analyzed using a new fiber analysis framework. Finally, the analysis of histologic images provided topologic ordered parameters of axons that were transferred into parameter maps. The axon parameter maps were analyzed further via a recently developed traverse generating algorithm that calculated test lines oriented perpendicular to the cortical surface and white matter border. The gray value coded parameters of the parameter maps were then transferred into profile arrays. These profile arrays were statistically analyzed by a reliable excess mass approach we recently developed. We found that specific axonal parameters are preferentially distributed throughout granular and agranular types of cortex. Furthermore, our new procedure detected transition regions originally defined by changes of cytoarchitectonic layering. Statistically significant inhomogeneities of the distribution of certain axon quantities were shown to indicate a subparcellation of areas 4 and 6. The quantification techniques established here for the analysis of spatial axon distributions within larger regions of the cerebral cortex are suitable to detect inhomogeneities of laminar axon patterns. Hence, these techniques can be recommended for systematic and observer-supported cortical area mapping and parcellation studies.  相似文献   

2.
现实环境下的人脸认证系统性能受光照变化影响很大.本文提出一种基于各向异性扩散算法的多尺度人脸光照不变特征图像提取算法.其特点是针对人脸图像中的光照问题引入新的区间不一致描述子,并提出新的传递系数以消除传统各向异性扩散算法带来的图像光晕效应,进而形成新的各向异性扩散算法.该算法可以在多尺度空间中有效地提取不随光照变化的人脸结构特征图像,不需复杂的光照变化建模,且对训练样本无特殊要求.在Yale B及CMU PIE标准人脸库上进行了实验,结果表明该算法在低频光照域上具有很好的边缘保持能力,即使在光照变化很大的条件下也能获得良好的处理效果,并明显的降低了人脸认证的错误率.  相似文献   

3.
    
We obtained scanning near‐field optical microscopy images to study the excitation of surface plasmons on metallic dots fabricated using scanning probe lithography. Gold nano‐dots were fabricated by applying electric voltages to conducting probes installed in an atomic force microscope using the mechanism of field‐induced diffusion and nano‐oxidation plus Au‐coating. High spatial resolution of scanning near‐field optical microscopy revealed a ‘bifold’ pattern of surface plasmon mode on fabricated Au dots in the polarization direction of incident light. We found that scanning near‐field optical microscopy imaging combined with scanning probe lithography is able to provide a systematic study of surface plasmon excitation on nano‐metallic structures.  相似文献   

4.
Podsiadlo  P.  Stachowiak  G.W. 《Tribology Letters》1998,4(3-4):215-229
A modified Hurst orientation transform (HOT) method for characterization of wear particle surfaces is proposed and described in this paper. The method involves the calculation of self-affine Hurst coefficients in all directions and displays the calculated coefficient values in a form of rose plot. The calculation of individual Hurst coefficients, H, is based on the rescale range (r/s) analysis (r(d)/s∼ d H ). The rose plot is then used to obtain three texture surface parameters, i.e.: texture aspect ratio, texture minor axis and texture direction. The effectiveness of this modified HOT and resulting surface texture parameters was evaluated. The method was first applied to computer-generated images of isotropic and anisotropic particle fractal surfaces and then to field emission scanning electron microscope images of wear particles found in synovial joints. The ability of the surface parameters to reveal surface isotropy or anisotropy, measure roughness and determine the dominant direction of surface texture was assessed. The effects of measurement conditions such as noise, gain variations and focusing on the surface parameters were also investigated. The results demonstrate that the HOT and surface texture parameters developed can successfully be used in the characterization of wear particle surface topography. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The quantitative theory of image contrast in an electron microscope in the mirror operation mode is given in this paper. This theory permits us to calculate the potential distribution on the object surface from the current density distribution on the microscope screen. The potential distribution results in image formation on the screen. Local electric fields existing on the object surface lead to a perturbation of electron trajectories above the object and to a redistribution of the current density on the screen, causing image contrast. Using the quantitative correlation between these fields and the function of current density distribution on the screen, it is possible to calculate the magnitude of these microfields as well. As illustration, a measured potential distribution on an object surface with spiral structures of adsorbates was analysed. These structures are formed during reaction of CO oxidation on Pt(110). The value of the measured contact potential difference comprised a few hundredths of volt.  相似文献   

6.
    
Vesicles or caveolae within endothelial cells, fusing together to form vacuolar organelles, are implicated in macromolecular transport and cellular element transmigration across the blood–brain barrier (BBB) during inflammation and ischemia. Vacuolar organelles have been described by transmission electron microscopy and immunofluorescence, but the details of their dynamics have not been well addressed yet. Herein, by using tapping mode atomic force microscopy (AFM), we observed the time‐series changes of fused vesicles within the serum‐free cultured rat cerebral microvessel endothelial cells. The fused vesicles were certainly proved by fluorescent staining of Fm4‐64 combining simultaneous AFM imaging, as well as the field emission scanning electron microscopy technique. And energy dispersive spectrum results additionally implied that there may be specific structure and compositions around the vesicle region. These results indicate that increased vesicles in BBB may contribute to the formation of fused vesicles and a higher probability to construct the trans‐endothelial channel across endothelium layer. Furthermore, the AFM application may open up a new approach to investigate the details of transcellular process by fused vesicles. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
    
Photoluminescence from a two‐dimensional electron‐gas system in GaAs single hetero‐structures was investigated using a scanning near‐field optical microscope (SNOM) operated at cryogenic temperatures under high magnetic fields. The local intensity of the luminescence increased 600‐fold that at 0 T as the magnetic field was increased up to 6 T. The enhancement depended on the spatial resolution of the SNOM. These characteristics are explained by the suppression of the diffusion of photocarriers caused by the Lorentz force in magnetic fields.  相似文献   

8.
This paper aims to review aspects of cortical microtubule reorientation in higher plant cells. First, we look at the divergent environmental and developmental signals that can elicit the realignment of microtubules in interphase cells. Second, the regulatory factors that might orchestrate microtubule reorientation are examined. In particular, we address the questions of how these extracellular signals are perceived, by what mechanisms this information might be transmitted to the cortical microtubules, and what molecular factors regulate the process of realignment. We put forward an hypothesis of how electric fields reorientate microtubules in plant cells, focusing on the role of transmembrane proteins which might link cortical microtubules in the cytoplasm to the extracellular matrix. Finally, the need to examine microtubule reorientation in live cells is discussed, and we describe the novel visualization of microtubules in live cells of an intact plant. We conclude with our perspective of the future path of research which will be necessary to broaden our understanding of how microtubules undergo rapid reorientation in plant cells.  相似文献   

9.
High emission current backscattered electron (HC-BSE) stereo imaging at low accelerating voltages (≤ 5 keV) using a field emission scanning electron microscope was used to display surface structure detail. Samples of titanium with high degrees of surface roughness, for potential medical implant applications, were imaged using the HC-BSE technique at two stage tilts of + 3° and − 3° out of the initial position. A digital stereo image was produced and qualitative height, depth and orientation information on the surface structures was observed. HC-BSE and secondary electron (SE) images were collected over a range of accelerating voltages. The low voltage SE and HC-BSE stereo images exhibited enhanced surface detail and contrast in comparison to high voltage (> 10 keV) BSE or SE stereo images. The low voltage HC-BSE stereo images displayed similar surface detail to the low voltage SE images, although they showed more contrast and directional sensitivity on surface structures. At or below 5 keV, only structures a very short distance into the metallic surface were observed. At higher accelerating voltages a greater appearance of depth could be seen but there was less information on the fine surface detail and its angular orientation. The combined technique of HC-BSE imaging and stereo imaging should be useful for detailed studies on material surfaces and for biological samples with greater contrast and directional sensitivity than can be obtained with current SE or BSE detection modes.  相似文献   

10.
    
Raman spectra obtained in the near‐field, with collection of the Raman‐shifted light in reflection, show selective enhancement of vibrational modes. We show that the boundary conditions for an electric field near a metal surface affect propagation of the reflected signal and lead to this selection. The enhancement of certain Raman forbidden vibrations is explained by the presence of an electric field gradient near the metal‐apertured fibre probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号