首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low volumetric solvent productivities are one of the characteristics of an acetone-butanol fermentation by C. acetobutylicum. A calcium alginate immobilized continuous culture was used in a novel gas-sparged reactor to strip the solvents from the aqueous phase and reduce their toxicity. A dilution rate of 0.07 h?1 was found to give maximum solvent productivity at 0.58 g dm?3 h?1, although at 0.12 h?1 the productivity was slightly lower. In order to increase glucose uptake by the culture, feed glucose concentrations were increased over time to attempt to acclimatize the culture. This resulted in a productivity as high as 0.72 g dm?3 h?1 although this production rate was found to be unstable.  相似文献   

2.
BACKGROUND: The bioconversion of whey into ethanol by immobilized Kluyveromyces marxianus in packed‐bed and fluidized bioreactors is described. Both batch and continuous cultures were analyzed using three different strains of K. marxianus and the effect of the operating mode, temperature, and dilution rates (D) were investigated. RESULTS: All immobilized strains of K. marxianus (CBS 6556, CCT 4086, and CCT 2653) produced similar high yields of ethanol (0.44 ± 0.01 g EtOH g?1 sugar). Significant variations of conversion efficiencies (66.1 to 83.3%) and ethanol productivities (0.78 to 0.96 g L?1 h?1) were observed in the experiments with strain K. marxianus CBS 6556 at different temperatures. High yields of ethanol were obtained in fluidized and packed‐bed bioreactors continuous cultures at different D (0.1 to 0.3 h?1), with the highest productivity (3.5 g L?1 h?1) observed for D = 0.3 h?1 in the fluidized bioreactor (87% of the maximal theoretical conversion), whereas the highest ethanol concentration in the streaming effluent (28 g L?1) was obtained for D = 0.1 h?1. Electronic micrographs of the gel beads showed efficient cell immobilization. CONCLUSION: Batch and continuous cultivations of immobilized K. marxianus in fluidized and packed‐bed bioreactors enable high yields and productivities of ethanol from whey. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
BACKGROUND: A closed‐circulating system for ethanol fermentation was constructed by coupling a cell‐immobilized bed fermentor with pervaporation using a composite PDMS membrane. A continuous fermentation experiment was carried out for about 250 h in the system at 28 °C. RESULTS: The cell density in the immobilized bed was up to 1.76 × 1010 cells g?1 gel. The ethanol concentration in the broth was maintained at about 43 g L?1. The glucose utilization and ethanol productivity were 23.26 g L?1 h?1 and 9.6 g L?1 h?1, respectively. The total flux and the ethanol flux through the membrane pervaporation unit varied in the range 300–690 g m?2 h?1 and 61–190 g m?2 h?1, respectively. The average ethanol concentration in the permeate was 23.1% (wt%). The carbon recovery efficiency was 86.8% (wt%), determined by calculating the carbon balance kinetics. The effect of ethanol concentration in the broth on the ethanol productivity was analyzed by modeling product formation kinetics of the system. CONCLUSIONS: Compared with the traditional free cell fermentation system and packed bed fermentation system, the closed‐circulating system has the promising features of higher glucose utilization and ethanol productivity, and cleaner production. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
BACKGROUND: Poly‐β‐hydroxybutyrate (PHB) accumulation is triggered by limitation of a nutrient other than carbon. The production cost of PHB is very high. In order to reduce this cost, continuous cultivation for the accumulation of PHB was investigated. The culture was first allowed to grow under fed‐batch conditions to yield a significant increase in biomass and PHB accumulation. Thereafter this high‐cell‐density biomass containing PHB was allowed to grow and maintained under conditions of continuous cultivation so that the overall process could be simplified and economised. RESULTS: For continuous cultivation a medium containing 90 g L?1 fructose and 2.5 g L?1 nitrogen (as urea) was fed continuously at a dilution rate of 0.1 h?1. A steady state biomass of 27.7 g L?1 with a PHB concentration of 5.5 g L?1 was established in the bioreactor. This resulted in a continuous PHB productivity of 0.55 g L?1 h?1. CONCLUSION: The experiments have resulted in the development of a novel production technology involving the integration of batch, fed‐batch and continuous processes. At the same time the production of PHB under continuous cultivation increases the overall industrial importance of the system. Copyright © 2008 Society of Chemical Industry  相似文献   

5.
BACKGROUND: Liquid emulsion membrane (LEM)‐encapsulated live cells can be used to produce various products. This work reports on LEM‐encapsulated cells for producing xylitol and models the production process. RESULTS: Encapsulated cells of Candida mogii ATCC 18364 were used to produce xylitol from xylose. Soybean oil LEM consisting of 5% (w/v) lanolin and microwaxes was found most suitable for this process. The LEM‐encapsulated cells were immobilized in a tubular biocatalytic loop. Xylitol was produced under oxygen‐limited and aerobic conditions. Xylitol productivity and yield were 0.005 g L?1 h?1 and 0.52 g g?1, respectively, for oxygen‐limited operation. Under aerobic conditions, xylitol productivity increased greatly to 0.022 g L?1 h?1, but yield on xylose declined to 0.49 g g?1. A mathematical model successfully described substrate consumption and product formation in the LEM‐immobilized cell system. CONCLUSION: Potentially, immobilized cell LEM systems are useful for certain fermentations and they can be successfully modeled, as shown by the example of xylitol from xylose process. Copyright © 2009 Society of Chemical Industry  相似文献   

6.
BACKGROUND: Gluconic acid (GA) production by immobilized cells of mutant Aspergillus niger ORS‐4.410 on polyurethane sponge (PUS) and calcium‐alginate (Ca‐alginate) was evaluated in repeated batches of solid state surface fermentation (SSF) and submerged fermentation (SmF) conditions, respectively, utilizing rectified grape must as carbon source. RESULTS: The passive immobilization of cells in fermentation medium solid support of having 0.4 cm3 cube size, 4% spore suspension, 0.6 g inoculum of PUS immobilized cells at 32 °C and 2.0 L min?1 resulted in the maximum GA production (88.16 g L?1) with a 92.8% yield, while the Ca‐alginate matrix with a 0.5 cm diameter bead size, 2–3% spore suspension, 15 g inoculum at 34 °C and 150 rpm agitation speed revealed 67.19 g L?1 GA with a 85.2% yield. Repeated use of PUS showed higher levels of GA (110.94 g L?1) in the third–fourth fermentation cycles with 95–98% yield and 22.50 g L?1 d?1 productivity under SSF that was 2.5‐fold higher than the productivity obtained from a typical fermentation cycle, and 54% greater than the productivity obtained with repetitive use of Ca‐alginate immobilized cells of A. niger under SmF. CONCLUSION: Using immobilized cells of A. niger in PUS, the rectified form of grape must can be utilized for GA production as an alternative source of carbohydrate by replacing the conventional fermentation conditions. Copyright © 2008 Society of Chemical Industry  相似文献   

7.
Continuous ethanol fermentation of glucose using fluidized bed technology was studied. Saccharomyces cerevisiae were immobilized and retained on porous microcarriers. Over two-thirds of the total reactor yeast cell mass was immobilized. Ethanol productivity was examined as dilution rate was varied, keeping all other experimental parameters constant. Ethanol yield remained high at an average of 0.36 g ethanol g?1 glucose (71% of theoretical yield) as the dilution rate was increased stepwise from 0.04 h?1 to 0.14 h?1. At a dilution rate of 0.15 h?1, the ethanol yield steeply declined to 0.22 g ethanol g?1 glucose (44% of theoretical yield). The low maximum percentage of theoretical yield is primarily due to an extended mean cell residence time, and possibly due to the inhibitory effect of a high dissolved carbon dioxide concentration, enhanced by the probable intermittent levels of low pH in the reactor. Constant ethanol production was possible at a high glucose loading rate of 840 g dm?3 day?1 (attained at a dilution rate of 0.14 h?1). Although the highest average ethanol concentration (97.14 g dm?3) occurred at the initial dilution rate of 0.04 h?1, the peak average ethanol production rate (2.87 g (g yeast)?1 day?1) was reached at a greater dilution rate of 0.11 h-1. Thus, the optimal dilution rate was determined to be between 0.11 h?1 and 0.14 h?1. Ethanol inhibition on yeast cells was absent in the reactor at average bulk-liquid ethanol concentrations as high as 97.14 g dm?3. In addition, zero-order kinetics on ethanol production and glucose utilization was evident.  相似文献   

8.
A new immobilized biocatalyst based on Rhizopus oryzae fungal cells entrapped in poly(vinyl alcohol)‐cryogel was evaluated in both the batch and semi‐batch processes of L (+)‐lactic acid (LA) production, when glucose, acid hydrolysates of starch or gelatinized potato starch were used as the main substrates. Under the batch conditions, the immobilized biocatalyst developed produced LA with yields of 94% and 78% from glucose and acid starch hydrolysates, respectively. Semi‐batch conditions enabled product yields of 52% and 45% to be obtained with the corresponding substrates. The highest process productivity (up to 173 g L?1) was reached under semi‐batch conditions. Potato starch (5–70 g L?1) was also transformed into lactic acid by immobilized R. oryzae. It was shown that long‐term operation of the immobilized biocatalyst (for at least 480 h) produced a low decrease in metabolic activity. Copyright © 2006 Society of Chemical Industry  相似文献   

9.
A glucose‐limited chemostat was used to determine the growth parameters of BBK006 for continuous production of the biosurfactant surfactin. The continuous cultivation exhibited low maintenance metabolism (m = 0.39 mmolglucose gbacteria?1 h?1) and high molar growth yield ( gbacteria molglucose?1). It was found that the surfactin production rate in continuous culture was not only a function of dilution rate but also varied with the initial concentration of glucose in the feed. A high steady state concentration of surfactin (18 mg L?1) was maintained in the culture at a dilution rate of 0.2 h?1 when glucose concentration in the feed was 0.25 g L?1. This is the first demonstration of continuous surfactin production and recovery using glucose as a carbon source. The production of surfactin is known to be related to the age of the microorganisms and a simple mathematical model has been constructed to show how the age‐related production can be quantified. Copyright © 2006 Society of Chemical Industry  相似文献   

10.
BACKGROUND: Continuous ethanol fermentation of concentrated food waste hydrolysates has been studied. The process was carried out in an immobilized cell reactor with beads of calcium‐alginate containing immobilized Saccharomyces cerevisiae H058 at temperature 30 °C and pH 5.0. RESULTS: The total residual sugar decreased with increase of hydraulic retention time (HRT) under various reducing sugar concentrations. Ethanol production by immobilized cells increased with increase in HRT, regardless of the substrate concentrations employed. The highest ethanol concentration of 89.28 g L?1 was achieved at an HRT of 5.87 h and reducing sugar concentration of 200 g L?1. At an HRT of 1.47 h, the maximum volumetric ethanol productivity of 49.88 g L?1 h?1 and the highest ethanol yield of 0.48 g g?1 were achieved at reducing sugar concentration of 160 and 200 g L?1, respectively. The difference between the fresh and the 30‐day Ca–alginate immobilized cell was also shown by scanning electronic micrographs of beads taken from their outer and inner surfaces. CONCLUSIONS: Continuous ethanol production from concentrated food waste hydrolysates using immobilized yeast cells is promising in view of the high ethanol productivity obtained at relatively high conversion and excellent reactor stability. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
BACKGROUND: Microbial bioethanol production is an important option in view of the finite global oil reserves. Bioethanol fermentation was carried out using immobilized microorganisms (Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, etc.), which has many advantages compared with the use of free cells. Various support materials have been used for bioethanol fermentation, and alginate gels have been one of the most widely used matrices for cell entrapment. The aim of this study was increased bioethanol production by Saccharomyces cerevisiae immobilized on alginate gels. First, N‐vinyl‐2‐pyrrolidone was grafted onto sodium alginate. Then, the properties of ethanol production were investigated using the matrix obtained. RESULTS: The performance of ethanol fermentation was affected by calcium chloride concentration, N‐vinyl‐2‐pyrrolidone grafted onto the sodium alginate, sugar concentration and the percentage of immobilized cell beads. These effects were optimized to give maximum ethanol production. Ethanol production was accelerated when sodium alginate polymer was modified with N‐vinyl‐2‐pyrrolidone. The maximum concentration, productivity and yield of ethanol were 69.68 g L?1, 8.71 g L?1 h?1 and 0.697 g g?1, respectively. CONCLUSION: The new polymeric matrix, when compared with sodium alginate, showed better ethanol production due to the hydrophilic property of N‐vinyl‐2‐pyrrolidone. The results suggest that the proposed method for immobilization of Saccharomyces cerevisiae has potential in industrial applications of the ethanol production process. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
BACKGROUND: The bio‐oxidation of ferrous iron is a potential industrial process in the regeneration of ferric iron and the removal of H2S in combustible gases. Bio‐oxidation of ferrous iron may be an alternative method of producing ferric sulfate, which is a reagent used for removal of H2S from biogas, tail gas and in the pulp and paper industry. For practical use of this process, this study evaluated the optimal pH and initial ferric concentration. pH control looks like a key factor as it acts both on growth rate and on solubility of materials in the system. RESULTS: Process variables such as pH and amount of initial ferrous ions on oxidation by A. ferrooxidans and the effects of process variables dilution rate, initial concentrations of ferrous on oxidation of ferrous sulfate in the packed bed bioreactor were investigated. The optimum range of pH for the maximum growth of cells and effective bio‐oxidation of ferrous sulfate varied from 1.4 to 1.8. The maximum bio‐oxidation rate achieved was 0.3 g L?1 h?1 in a culture initially containing 19.5 g L?1 Fe2+ in the batch system. A maximum Fe2+ oxidation rate of 6.7 g L?1 h?1 was achieved at the dilution rate of 2 h?1, while no obvious precipitate was detected in the bioreactor. All experiments were carried out in shake flasks at 30 °C. CONCLUSION: The monolithic particles investigated in this study were found to be very suitable material for A. ferrooxidans immobilization for ferrous oxidation mainly because of its advantages over other commonly used substrates. In the monolithic bioreactor, the bio‐oxidation rate was 6.7 g L?1 h?1 and 7 g L?1 h?1 for 3.5 g L?1 and 6 g L?1 of initial ferrous concentration, respectively. For higher initial concentrations 16 g L?1 and 21.3 g L?1, bio‐oxidation rate were 0.9 g L?1 h?1 and 0.55 g L?1 h?1, respectively. Copyright © 2008 Society of Chemical Industry  相似文献   

13.
BACKGROUND: Simultaneous xylose isomerization and fermentation was investigated to improve the lactic acid production from xylose by Lactobacillus pentosus in a novel two‐in‐one bioreactor constructed by packing the immobilized xylose isomerase (65 g) in a fixed bed reactor (diameter 56 mm × 66 mm, packing volume 154 mL) with a permeable wall, which was installed inside a conventional fermenter (2 L) and rotated along the axis together with the mechanical stirrer of the fermenter. RESULTS: Xylose (20 g L?1) was completely consumed within 24 h in the novel bioreactor, compared with 72 h needed for the control without packed enzyme. The maximum cell density (17.5 g L?1) in the novel bioreactor was twice that in the control and the lactic acid productivity (0.58 g L?1 h?1) was 3.8 times higher. Repeated use of the immobilized enzyme showed that the lactic acid productivity and yield obviously dropped after the first batch fermentation but maintained almost unchanged afterwards. CONCLUSION: Simultaneous xylose isomerization and fermentation significantly improved lactic acid production from xylose by Lactobacillus pentosus. The novel bioreactor made it easier to recycle and reuse the immobilized enzyme. © 2012 Society of Chemical Industry  相似文献   

14.
BACKGROUND: Efficient conversion of glucose/xylose mixtures from lignocellulose is necessary for commercially viable ethanol production. Oxygen and carbon sources are of paramount importance for ethanol yield. The aim of this work was to evaluate different glucose/xylose mixtures for ethanol production using S. cerevisiae ITV‐01 (wild type yeast) and P. stipitis NRRL Y‐7124 and the effect of supplying oxygen in separate and co‐culture processes. RESULTS: The complete conversion of a glucose/xylose mixture (75/30 g L?1) was obtained using P. stipitis NRRL Y‐7124 under aerobic conditions (0.6 vvm), the highest yield production being Yp/s = 0.46 g g?1, volumetric ethanol productivity Qpmax = 0.24 g L?1 h?1 and maximum ethanol concentration Pmax = 34.5 g L?1. In the co‐culture process and under aerobic conditions, incomplete conversion of glucose/xylose mixture was observed (20.4% residual xylose), with a maximum ethanol production of 30.3 g L?1, ethanol yield of 0.4 g g?1 and Qpmax = 1.26 g L?1 h?1. CONCLUSIONS: The oxygen present in the glucose/xylose mixture promotes complete sugar consumption by P. stipitis NRRL Y‐7124 resulting in ethanol production. However, in co‐culture with S. cerevisiae ITV‐01 under aerobic conditions, incomplete fermentation occurs that could be caused by oxygen limitation and ethanol inhibition by P. stipitis NRRL Y‐7124; nevertheless the volumetric ethanol productivity increases fivefold compared with separate culture. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
The continuous production of ethanol from carob pod extract by immobilized Saccharomyces cerevisiae in a packed-bed reactor has been investigated. At a substrate concentration of 150 g dm?3, maximum ethanol productivity of 16 g dm?3 h?1 was obtained at D = 0·4 h?1 with 62·3% of theoretical yield and 83·6% sugars′ utilization. At a dilution rate of 0·1 h?1, optimal ethanol productivity was achieved in the pH range 3·5–5·5, temperature range 30–35·C and initial sugar concentration of 200 g dm?3. Maximum ethanol productivity of 24·5 g dm?3 h?1 was obtained at D = 0·5 h?1 with 58·8% of theoretical yield and 85% sugars′ utilization when non-sterilized carob pod extract containing 200 g dm?3 total sugars was used as feed material. The bioreactor system was operated at a constant dilution rate of 0·5 h?1 for 30 days without loss of the original immobilized yeast activity. In this case, the average ethanol productivity, ethanol yield (% of theoretical) and sugars′ utilization were 25 g dm?3 h?1, 58·8% and 85·5%, respectively.  相似文献   

16.
Cross‐linked enzyme crystals (CLEC) of laccase were prepared by crystallizing laccase with 75% (NH4)2SO4 and cross‐linking using 1.5% glutaraldehyde. The cross‐linked enzyme crystals were further coated with 1 mmol L?1 β‐cyclodextrin by lyophilization. The lyophilized enzyme crystals were used as such for the biotransformation of pyrogallol to purpurogallin in a packed‐bed reactor. The maximum conversion (76.28%) was obtained with 3 mmol L?1 pyrogallol at a residence time of 7.1 s. The maximum productivity (269.03 g L?1 h?1) of purpurogallin was obtained with 5 mmol L?1 pyrogallol at a residence time of 3.5 s. The productivity was found to be 261.14 g L?1 h?1 and 251.1 g L?1 h?1 when concentrations of 3 mmol L?1 and 7 mmol L?1 respectively were used. The reaction rate of purpurogallin synthesis was maximum (2241.94 mg purpurogallin mg?1 CLEC h?1) at a residence time of 3.5 s, when 5 mmol L?1 pyrogallol was used as the substrate. The catalyst to product ratio calculated for the present biotransformation was 1:2241. The CLEC laccase had very high stability in reuse and even after 650 h of continuous use, the enzyme did not lose its activity. Copyright © 2006 Society of Chemical Industry  相似文献   

17.
BACKGROUND: Bio‐ethanol production from renewable sources, such as sugar cane, makes it a biofuel that is both renewable and environmentally friendly. One of the strategies to reduce production costs and to make ethanol fuel economically competitive with fossil fuels could be the use of wild yeast with osmotolerance, ethanol resistance and low nutritional requirements. The aim of this work was to investigate the kinetics of ethanol fermentation using Saccharomyces cerevisiae ITV‐01 yeast strain in a batch system at different glucose and ethanol concentrations, pH values and temperature in order to determine the optimum fermentation conditions. RESULTS: This strain showed osmotolerance (its specific growth rate (µmax) remained unchanged at glucose concentrations between 100 and 200 g L?1) as well as ethanol resistance (it was able to grow at 10% v/v ethanol). Activation energy (Ea) and Q10 values calculated at temperatures between 27 and 39 °C, pH 3.5, was 15.6 kcal mol?1 (with a pre‐exponential factor of 3.8 × 1012 h?1 (R2 = 0.94)) and 3.93 respectively, indicating that this system is biologically limited. CONCLUSIONS: The optimal conditions for ethanol production were pH 3.5, 30 °C and initial glucose concentration 150 g L?1. In this case, a maximum ethanol concentration of 58.4 g L?1, ethanol productivity of 1.8 g L?1 h?1 and ethanol yield of 0.41 g g?1 were obtained. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
Adsorption coupled with electrostatic interaction as an immobilization technique is an important microbial cell immobilization technique. Treatment of the polymer matrix with the cationic surface treating agent chitosan for lactic acid production has been studied. Cells of Lactobacillus plantarum NCIM 2084 were immobilized on a polypropylene (PP) matrix treated with different concentrations of chitosan. The biocatalyst adsorbed on the 1.0 g dm?3 chitosan‐treated PP matrix proved to be most effective. Repeated batch fermentation experiments showed that the immobilized biocatalyst could be recycled effectively 11 times. Studies were also carried out in a packed bed reactor with media recirculation. A high productivity of 7.66 g dm?3 h?1 could be obtained with a conversion of 94% and a yield of 97% at an average residence time of 30 h. © 2001 Society of Chemical Industry  相似文献   

19.
BACKGROUND: Continuous culture of the freshwater microalga Choricystis minor was investigated for possible use in producing lipid feedstock for making biofuels. The effects of temperature (10–30 °C) and dilution rate (0.005–0.017 h?1) on lipid productivity in a nutrient sufficient medium in a 4 L stirred tank bioreactor under continuous illumination at an incident irradiance level of 550 µE · m?2s?1 and a controlled pH of 6 under carbon dioxide supplemented conditions are reported. RESULTS: The maximum lipid productivity was 82 mg L?1 d?1 at 25 °C and a dilution rate of 0.014 h?1. Lipid contents of the biomass were 21.3 ± 1.7 g per 100 g of dry biomass, irrespective of the culture temperature and dilution rate. After the biomass had been grown in nutrient sufficient conditions in continuous culture, it was recovered and subjected to various postharvest treatments. With the best postharvest treatment, the neutral lipid contents of the algal biomass were raised ~6‐fold relative to untreated biomass. CONCLUSION: At 82 mg L?1 d?1, or 21 000 L ha?1 year?1, the lipid productivity of C. minor was nearly four times the lipid productivity of oil palm, a highly productive crop. Therefore, C. minor is potentially a good source of renewable lipid feedstock for biofuels. Copyright © 2009 Society of Chemical Industry  相似文献   

20.
BACKGROUND: Reactions performed under solvent‐free conditions give processes that are environmentally friendly, since most solvents are polluting agents. In this work, the performance of Candida rugosa lipae (CRL) immobilized on styrene‐divinylbenzene (STY‐DVB) or controlled pore silica (CPS), and the commercial lipase Novozym 435, was evaluated for the synthesis of butyl esters in solvent–free systems (SFS). A 22 full factorial design was used to study the influence of the organic acid chain length and the biocatalyst concentration on the esterification performance. RESULTS: When CRL on STY‐DVB was used, the ester formation was influenced by both variables and their interaction. The reaction conversion was higher (63%) using 10% of immobilized system and lauric acid, corresponding to a productivity of 3.62 g L?1 h?1 For CRL on CPS, only the effect of biocatalyst concentration was significant, and the highest yield was attained using 20% of immobilized system and caprilic acid. In the case of Novozym 435, the highest yield (49%) was obtained using butyric acid as acyl donor at 15% of immobilized lipase. CONCLUSION: The results allowed better understanding of the influence of important parameters in this environmentally friendly process, which also has the process advantage of a higher volumetric productivity when compared with a solvent system. Copyright © 2007 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号