共查询到20条相似文献,搜索用时 15 毫秒
1.
This work experimentally and numerically studies the thermal-fluid characteristics of plate-fin heat sinks under impingement cooling by adjusting the impinging Reynolds number, the impingement distance, and the fin dimensions. The parameters and the ranges under consideration are the impinging Reynolds number (Re = 5000–25,000), the impingement distance (Y/D = 4–28), the fin width (W/L = 0.08125–0.15625) and the fin height (H/L = 0.375–0.625). The results show that the heat transferred by the heat sink increases with the impinging Reynolds number. The thermal performance can be improved significantly even at low impinging Reynolds number. However, the improvement becomes indistinct as the impinging Reynolds number increases. The thermal resistance declines as the impingement distance increases, and is minimal at Y/D = 20 for various impinging Reynolds numbers. Additionally, the thermal resistance increases as the impingement distance increases further. Increasing the fin width can effectively reduce the thermal resistance. However, as the fin width increases beyond a particular value, the thermal resistance increases dramatically. Reducing the thermal resistance by increasing the fin height depends on a suitable impinging Reynolds number and fin width. Therefore, the effect of the fin height is weaker than that of the impinging Reynolds number or the fin width. 相似文献
2.
Experimental study of impingement cooling by heat sinks with thin longitudinal fins for LSI packages
This paper reports on the impingement cooling characteristics of a heat sink with thin longitudinal fins of 0.2 mm thickness, which are spaced with a fin-pitch in the range 0.5 mm to 2.0 mm. The air cooling of the heat sink comes from a slot-shaped orifice positioned above the heat-sink center. The breadth of the gap between the fin tops and the inlet orifice is in the range 0 mm to 10 mm. The thermal resistance of the thin longitudinal fins used is about 50% to 57% that of the thick longitudinal fins now in commercial use. The cooling performance of the thin-plate fins is almost the same as that of optimally arranged pin-fins with the same total surface area. A maximum value of six times the heat transfer rate of a single flat plate having the same base area was observed for the thin-plate fins. A comparison of cooling performance between impingement and channel flow systems was conducted. The performance of impingement cooling systems is almost unaffected by the breadth of the gap between the fin tops and the inlet orifice (or, for channel cooling, the upper wall). On the other hand, the performance of channel-cooling systems decreases significantly as the gap widens. © 1997 Scripta Technica, Inc. Heat Trans Jpn Res, 25(7): 449–459, 1996 相似文献
3.
H.A. Mohammed P. GunnasegaranN.H. Shuaib 《International Communications in Heat and Mass Transfer》2011,38(2):194-201
Numerical investigations are performed to investigate the laminar flow and heat transfer characteristics of trapezoidal MCHS using various types of base nanofluids and various MCHS substrate materials on MCHS performance. This study considered four types of base fluids including water, ethylene glycol (EG), oil, and glycerin with 2% volume fraction of diamond nanoparticle, and four types of MCHS substrate materials including copper, aluminium, steel, and titanium. The three-dimensional steady, laminar flow and heat transfer governing equations are solved using the finite volume method. It is found that the best uniformities in heat transfer coefficient and temperature among the four mixture flows can be obtained using glycerin-base nanofluid followed by oil-base nanofluid, EG-base nanofluid, and water-base nanofluid heat sinks. However, the heat transfer performance of water-base nanofluid can be greatly enhanced in steel made substrate heat sink. 相似文献
4.
This paper is a semi-empirical report on an algorithm for the prediction of thermal resistance for impingement cooling of pin-fin heat sinks for LSI packages when the inlet orifice is relatively large and is located over the center of the sink. We present a physical model suitable for these types of heat sinks, based on flow visualization results. The model divides the flow region into five parts: I) the top surfaces of the fins where they are directly under the inlet orifice, II) the portions of the vertical surfaces of the pin-fin cylinders, where those surfaces are directly below the inlet port, III) the surface of the base to which the fins are attached, excluding the areas occupied by the feet of the fins themselves, IV) the portions of the vertical surfaces of the fin-cylinders excluding those portions of the surfaces that are directly below the inlet port (complementary to region II), V) the portions of the top surfaces of the pins, excluding those portions directly below the inlet port (complementary to region I). We predicted thermal resistance values for heat sinks with pin-fin arrays, for a variety of orifice diameters, gaps, pin-fin diameters, and heights, and number of fins. These values agreed with experimental data within ±30%. © 1997 Scripta Technica, Inc. Heat Trans Jpn Res, 25(7): 434–448, 1996 相似文献
5.
This paper describes an experimental and a semi-empirical study on the impingement cooling characteristics of heat sinks with longitudinal fins of a type suitable for LSI packages. The experiments were performed with a variety of different fins. To enhance impingement cooling, one long rectangular inlet orifice (slit) over the center of the heat sink was found to offer the best structure. The optimum orifice width is about 1/6 of the base width of the heat sink. The thermal resistance at a fixed volumetric flow rate and orifice width varies little with size of the gap between the fin tops and inlet orifice, but gaps near 2 mm slightly lower the resistance. Correlations are proposed between the thermal resistance of the heat sink and the geometry of the longitudinal fins. The accuracy of the predicted thermal resistances was found to be within ±25% of the experimental data. © 1997 Scripta Technica, Inc. Heat Trans Jpn Res, 25(8): 537–553, 1996 相似文献
6.
This study applied the computational fluid dynamic (CFD) code, ANSYS Fluent for simulating the effect a piezoelectric fan installed inside the rectangular channel by numerical simulation method for transient flow field and investigating the influence of each parameter. To remove the disorganized form of energy from the electronic components, the reversible piezoelectric effect is employed to energize the piezoelectric fan. To observe the variation of fan characteristics and to predict the convective heat transfer coefficient, CFD code ANSYS Fluent 15.0 is used. The numerical simulation parameters included are Nusselt number, number of fins (n = 12 and 14), and counter‐shift (inward and outward‐phase), and distance between the upper portion of the fan tip to the front part of the low thermal reservoir. Numerical analysis was carried out to evaluate the effect of thermal flow fields on the heat sink and piezoelectric fan employed in a flow domain. the results showed that by varying the height from channel bottom to the center of piezoelectric fan improves the performance of the piezoelectric fan, piezoelectric fan swinging in a transient phenomena and also simultaneously influences fluid flow behavior on the heat source surface, the fan vibration at counter‐phase has a better rate of heat transfer than vibration in in‐phase. 相似文献
7.
High-performance compact heat sinks have been developed for the effective cooling of high-density LSI packaging. Heat transfer and pressure loss characteristics of the heat sinks in both air-cross-flow and air-jet cooling have been experimentally studied. The present heat sinks were of plate-fin and pin-fin arrays with a fin pitch of 0.7 mm. The plate-fin heat sinks had higher cooling performance than the pin-fin heat sinks in the range of large airflow rates both in air-cross-flow and air-jet cooling. The thermal conductance in cross-flow cooling was 20 or 40% larger than that in jet cooling. The correlation of Colburn j-factor/Fanning friction factor versus the Reynolds number for the present heat sinks was found to be very close to that of a conventional large-size heat exchanger. © Scripta Technica, Heat Trans Asian Res, 28(8): 687-705, 1999 相似文献
8.
High-performance and very compact heat sinks have been developed for effective cooling of VLSIs with high heat-generation densities. Their heat transfer and pressure loss characteristics in air-jet cooling have been experimentally studied. The highly compact heat sinks were plate-fin arrays with a very small fin pitch of 0.4–2.0 mm. The rectangular jet nozzle width that gave the highest cooling performance was 30 to 40% of the streamwise length of the heat sinks. The influence of fin height on heat transfer became weak when the ratio of the height to the thickness of the fin exceeded approximately 35. When the air flow rate was constant, the thermal conductance increased as the fin pitch decreased. For a constant fin pitch, heat sinks with smaller fin thickness showed larger thermal conductance at a given blower power consumption. In our experimental range, the heat dissipation rate per unit heat sink volume increased as the base plate area of the heat sink became small. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(6): 399–414, 1998 相似文献
9.
Constructal design and thermal analysis of microchannel heat sinks with multistage bifurcations in single-phase liquid flow 总被引:1,自引:0,他引:1
《Applied Thermal Engineering》2014,62(2):791-802
Based on constructal theory, five different cases with multistage bifurcations are designed as well as one case without bifurcations, and the corresponding laminar fluid flow and thermal performance have been investigated numerically. All laminar fluid flow and heat transfer results are obtained using computation fluid dynamics, and a uniform wall heat flux thermal boundary condition is applied all heated surfaces. The inlet velocity ranges from 0.66 m/s to 1.6 m/s with the corresponding Reynolds number ranging from 230 to 560. The pressure, velocity, temperature distributions and averaged Nusselt number are presented. The overall thermal resistances versus inlet Reynolds number or pumping power are evaluated and compared for the six microchannel heat sinks. Numerical results show that the thermal performance of the microchannel heat sink with multistage bifurcation flow is better than that of the corresponding straight microchannel heat sink. The heat sink with a long bifurcation length in the first stage (Case 1A) is superior. The usage of multistage bifurcated plates in microchannel heat sink can reduce the overall thermal resistance and make the temperature of the heated surface more uniform (Case 3). It is suggested that proper design of the multistage bifurcations could be employed to improve the overall thermal performance of microchannel heat sinks and the maximum number of stages of bifurcations is recommended to be two. The study complements and extends previous works. 相似文献
10.
Basim Freegah 《亚洲传热研究》2023,52(2):1118-1141
In this paper, improving the thermal performance of flat plate solar water heater systems by inserting different tube configurations inside the riser pipes has been numerically and experimentally studied. This study is focused on increasing the moving of energy from riser pipes to the operating fluid within the riser pipes. To achieve that, the diameter of the riser pipes was increased along with the insertion of different tube configurations within them, namely, smooth, helical, and wavy tubes, keeping the same amount of the operating liquid. A comparison was performed to determine the best in terms of coefficient of heat transfer of the operating liquid, mass flow rate of the operating liquid, pressure drop, and water temperature in the storage tank, as a thermal performance indication of the system under study. The findings show the model consisting of a straight tube inside the riser pipe provides the best thermal performance. In terms of thermal performance, the straight model outperforms the conventional model by 12.3%. An experimental and numerical comparison between the optimum model (straight model) was conducted. The study proves that the average difference between numerical results and experimental findings is 7.2%. 相似文献
11.
12.
The present paper describes experimental results on the fluid flow and heat transfer of natural convection between a horizontal, heated plate facing upward and an insulated cover plate. The experiments were carried out with water. The width of the test plates W and their gaps H were changed from W = 50 to 250 mm and H = 10 to 30 mm and ∞ (no cover plate). The visualization studies with dye and liquid crystal thermometry revealed that the roll cells whose axes are perpendicular to the flow direction appear and become dominant over the heated plate on decreasing the gap. These roll cells inhibit the heat transfer, and thus, the heat transfer coefficients become smaller than those without a cover plate. It was found that the flow and heat transfer in the region near the plate edges are unaffected by the cover plate. The conditions of the above reduced heat transfer were determined empirically. Moreover, nondimensional correlations for the local and the overall heat transfer coefficients of the heated plates are proposed based on the present heat transfer results. © 2000 Scripta Technica, Heat Trans Asian Res, 29(4): 333–346, 2000 相似文献
13.
The rapid improvements in electronic devices have led to a high demand for effective cooling techniques. The purpose of this study was to investigate the heat transfer characteristics and performance of different aluminum heat sinks filled with aluminum foam for an Intel core i7 processor. The aluminum foam heat sinks were subjected to water flow covering the non-Darcy flow regime (300-600 Reynolds numbers). The bottom side of the heat sinks was heated with a heat flux between 8.5 and 13.8 W/cm2. Three different heat sinks were examined in this study. Models A, B, and C contained two, three and four channels, respectively. Each channel gap was filled with ERG aluminum foam. The distributions of the local surface temperature and the local Nusselt number were measured for each heat sink design. The experimental data were compared with the numerical results. The average Nusselt number was obtained for the range of Reynolds numbers, and an empirical correlation of the average Nusselt number as a function of the Reynolds number was derived for each heat sink. The pressure drop across the characteristics of each heat sink design was measured. The thermal performance of each aluminum foam heat sink was evaluated based on the average Nusselt number and the required pumping power. The experimental results revealed that model B achieved the highest average Nusselt number compared with models A and C. However, model C had the highest surface to volume ratio; the thermal boundary layers, which are formed on adjacent fin surfaces inside the aluminum foam, interface with each other causing a reduction in the overall heat transfer. The numerical results were in good agreement with experimental data of local Nusselt number and local temperature with maximum relative errors of 2% and 1%, respectively. 相似文献
14.
C. S. Sravanthi 《亚洲传热研究》2019,48(8):4033-4048
An analysis of a steady axisymmetric heat transfer nanofluid flow due to a rotating disk having variable thickness in the presence of nonlinear radiation and nonuniform heat source/sink is presented. Water with Copper (Cu) and Silver (Ag) nanoparticles are utilized in the investigation. The governing equations along with boundary conditions are solved using the homotopy analysis method. A parametric study of the physical parameters is done and results are displayed in the form of graphs. The findings indicate that nonlinear radiation has a significant effect on temperature as well as on wall heat transfer when compared with linear case, which is more useful in few engineering processes. 相似文献
15.
Maunu KUOSA Petri SALLINEN Arttu REUNANEN Jari BACKMAN Jaakko LARJOLA Lasse KOSKELAINEN 《热科学学报(英文版)》2005,14(1):48-55
The study deals with the cooling of a high-speed electric machine through an air gap with numerical and experimental methods. The rotation speed of the test machine is between 5000-40000 r/min and the machine is cooled by a forced gas flow through the air gap. In the previous part of the research the friction coefficient was measured for smooth and grooved stator cases with a smooth rotor. The heat transfer coefficient was recently calculated by a numerical method and measured for a smooth stator-rotor combination. In this report the cases with axial groove slots at the stator and/or rotor surfaces are studied. Numerical flow simulations and measurements have been done for the test machine dimensions at a large velocity range. At constant mass flow rate the heat transfer coefficients by the numerical method attain bigger values with groove slots on the stator or rotor surfaces. The results by the numerical method have been confirmed with measurements. The RdF-sensor was glued to the stator and rotor surfaces to measure the heat flux through the surface, as well as the temperature. 相似文献
16.
A. M. Jyothi R. S. Varun Kumar J. K. Madhukesh B. C. Prasannakumara G. K. Ramesh 《亚洲传热研究》2021,50(7):7139-7156
The investigations on the flow of non-Newtonian fluids are becoming one of the major topics in the research field. These liquids have substantial applications in industrial and engineering fields such as drilling rigs, food processing, paint and adhesives, nuclear reactors and cooling systems. On the other hand, hybrid nanofluids play a major role in the heat transfer process. Keeping this in mind, the motion of Casson hybrid nanofluid squeezing flow between two parallel plates with the effect of heat source and thermophoretic particle deposition is examined here. The partial differential equations that govern fluid flow are converted into ordinary differential equations using appropriate similarity variables and those equations are numerically solved using the Runge–Kutta–Fehlberg fourth–fifth-order method by implementing the shooting scheme. The graphs depict the effects of a number of key parameters on fluid profiles in the absence and presence of the Casson parameter. These graphs show that fluid velocity enhances with the augmentation of the local porosity parameter. Thermal dispersal upsurges for enhancement of heat source/sink parameter and the concentration profile escalates for an upsurge of the thermophoretic parameter. Skin friction enhances with enhancement in the local porosity parameter. 相似文献
17.
建立某110 kV户内主变压器室通风散热三维模型,利用计算流体力学方法研究了变压器室自然通风临界温度,机械排风速率,进、出风口位置及大小对其散热特性的影响,并分析了原始方案与优化后方案中变压器室内的流动特性。结果表明:原始方案中变压器自然通风临界温度约为22℃,且随着室外环境温度升高,自然通风时室内变压器靠近底部区域易出现热量堆积,造成变压器散热量无法及时排出,进而对变压器的安全、稳定运行造成危害。在自然通风临界温度为22℃时,所需最小机械排风速率为2.56 m·s-1。增大进、出风口面积以及降低出风口位置均有利于增强变压器室内散热效果,使变压器室排风温度显著降低。将两个风机位置调低可使出风口平均温度降低1~2℃。与原始方案(风量2.56 kg·s-1)相比,优化后方案(风量降低至1.50~2.00 kg·s-1)可满足该变压器室通风散热需求,从而达到优化风量、降低噪声的目的。 相似文献
18.
CFD analysis of heat transfer in hexagonal subchannels of super fast reactor in upward flow 下载免费PDF全文
A super fast reactor is a fast spectrum, supercritical, water‐cooled reactor. This paper represents CFD analysis of heat transfer in hexagonal subchannels of super fast reactor using FLUENT in ANSYS. The numerical simulation of grid stability was done by considering different mesh sizes and the turbulence model for heat transfer of supercritical water was also carried out and compared with the experimental data. RNG k‐? turbulence model with enhanced wall treatment was considered for simulations. Heat transfer and heat generation rate analysis of the outer surface rod wall is carried out with different subchannels by changing various parameters like boundary conditions and pitch‐to‐diameter ratio. The analyses reveal that the outer surface of the rod wall temperature decreases with increase in pitch‐to‐diameter ratio. Maximum coolant temperature rises in edge subchannels more than corner subchannels. Further analysis is carried out with different mass fluxes. Increases in mass flux has minimal effect on the maximum rod wall surface temperature. Maximum cladding surface temperature for the corner subchannel is less compared to the edge subchannel. Heat generation rate also decreases with increase in pitch‐to‐diameter ratio. This paper also investigates the buoyancy effect on subchannels with varying heat flux as boundary conditions considering constant mass flux. 相似文献
19.
The dependence of the top heat loss factor of flat plate solar collectors with single and double glazing on the basic parameters was studied. An improved technique for calculation of the top heat loss factor of flat plate collectors with single glazing has recently been proposed by the authors. The present work, covering the flat plate collectors with single as well as double glazing, carefully examines the impact of the glass cover temperature(s) estimated by simple empirical relation(s) on the individual heat transfer coefficients and hence on the top heat loss factor. An analysis of the capability of the new method to accurately compute the top heat loss factor over an extensive number of combinations of the basic parameters has been carried out. 相似文献
20.
设计独立的换热器,降低水下工作柴油机中高负荷工况的排气温度.运用SolidWorks建立换热器模型并进行仿真分析,研究圆柱形换热器4种换热管布置方式对换热器温降与压损的影响.分析结果表明:设计的换热器可将排气温度由550.00℃降低到161.94℃,废气在换热器中的压损为5.95 kPa,降温效果和压损均满足相关工程要... 相似文献