首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CFD simulation of heat transfer and friction factor characteristics in a circular tube fitted with twisted tape inserts in laminar flow and constant heat flux is conducted using FLUENT version 6.3.26. Plain and alternate axis twisted tape inserts with twist ratios (y = 2.93, 3.91, 4.89) and alternative angles (β = 30°, 60°, 90°) have been used for the simulation. The simulated results are matched with the literature correlations for a plain tube with a discrepancy of less than ±8% for Nusselt number and ±6.25% for friction factor. The results also revealed that the heat transfer in terms of the Nusselt number increased with increases of Reynolds number, alternative angles, and decreases of twist ratio. Among the various twist ratios and alternative angles, the twist ratio of y = 2.93 and alternative angle β = 90° offered a maximum heat transfer enhancement. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(4): 384–396, 2014; Published online 3 October 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21089  相似文献   

2.
Flow and heat transfer of non‐Newtonian power‐law fluids over an inclined square cylinder placed inside a channel are studied numerically at low Reynolds numbers. In particular, calculations are carried out for Reynolds number (Re) = 1–40; power‐law index (n) = 0.4–1 and blockage ratio (β) = 12.5–50% at a Prandtl number (Pr) = 50. An increase in blockage ratio results in an increase in the total drag coefficient and decrease in the wake length. The Strouhal number and the root mean square value of the lift coefficient increase with the increasing Reynolds number for the fixed values of blockage ratio and power‐law index. The average Nusselt number increases with power‐law index and/or blockage ratio. The maximum enhancement in heat transfer is approximately 49, 41, and 35% for the values of blockages of 50, 25, and 12.5%, respectively, as compared to the corresponding Newtonian value. The average Nusselt number for the inclined square cylinder (at α = 45°) is always greater than the average Nusselt number for the regular square cylinder (at α = 0). Finally, simple expressions of drag and Nusselt number have been established for the above range of settings. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res 43(2): 167‐196, 2014; Published online 20 June 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21071  相似文献   

3.
The augmentation of convective heat transfer of a turbulent flow using delta‐winglet vortex generators (VG) in a triangular duct was experimentally investigated. Two side walls of the heated test section are electrically heated with a constant heat flux while the lower wall is indirectly heated. Single, double, and triple pairs of VG are utilized. Each pair of VG was punched on one wall of the test duct. The effects of the number of VG pairs, the VG angle of attack, the VG location from the leading edge of the test duct, the VG geometry, and Reynolds number are examined in this paper. The results indicate that the Nusselt number and friction factor are relatively proportional to the size, number, and the inclination angle of the VG. The Nusselt number increases and the friction factor decreases as the Reynolds number increases. The present results were compared with the available literature and they show good agreement. Correlation equations of Nusselt number and friction factor for turbulent flow are developed, for the cases studied, as a function of Reynolds number and VG angle of attack. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20382  相似文献   

4.
Heat transfer coefficient, flow field, and wall static pressure distributions were measured in a rotating two-pass square duct with detachment of 90° ribs from the first pass leading wall and second pass trailing wall as well as attachment of 90° ribs onto the other two opposite walls. Laser-Doppler velocimetry was used to measure the local flow velocity. The ribs were square in cross-section and their detached-distance/height ratio was 0.38. The rib-height/duct-height ratio and the pitch/rib-height ratio were 0.136 and 10, respectively. Duct Reynolds number was fixed at 1 × 104 and rotating number ranged from 0 to 0.2. Results are documented in terms of the main flow development, cross-stream secondary flow structure, the distributions of the pressure coefficient, the variation of friction factor with Ro, and passage averaged Nusselt number ratios under constant flow rate and constant pumping power conditions. For CFD reference, the periodic fully developed rotating flow condition is attained after the 6th rib pair in the first pass. In addition, the relationships between the regional averaged Nusselt number, transverse and streamwise mean velocity components, and turbulent kinetic energy are addressed. Using these relationships the general superiority of heat transfer enhancement of the attached–detached 90° ribs arrangement over the attached–attached one can be reasonably illustrated. Simple expressions are obtained to correlate the friction factor with Ro, which are lacking in the published literature. The respective contributions of the ribs and passage rotation on the passage friction loss are identified.  相似文献   

5.
The present study examines the turbulent flow of mixed convection heat transfer enhancement within a rectangular channel considering three different novel shapes of ribs (smooth, scalene, and curved-side triangular). The investigations were conducted experimentally by developing a new test facility, while the numerical computations were carried out using the finite volume method. The experimental work involves constructing of the channel, ribs, and all equipment and measurement instruments. The numerical work is based on ANSYS FLUENT considering the kε turbulent model. The results are presented and compared in terms of Nusselt number, friction factor, and performance factors for Reynolds numbers ranging between 3000 and 12,000. By comparing the average values of the numerically obtained Nusselt number with experimental measurements, the data showed a close agreement with a maximum difference of 5%. It also found that scalene triangular ribs (STRs) provide better performance in terms of heat transfer, although introducing a slight increase in friction losses. STRs showed (20%) increase in Nusselt number compared with smooth channel, and 3%–6% increase in Nusselt number compared with curved-side triangular ribs (CTRs). In contrast, CTRs have a lower friction factor value of 5% compared with STRs at a low value of a Reynolds number of 3000. Furthermore, the Nusselt number changes significantly (250% increase) by increasing the value of the Reynolds number from 3000 to 12,000. A thermal performance factor of up to 1.28 was achieved for the STRs at the lowest range of Reynolds' number of 3000. The findings from the present study are of practical importance for industries requiring heat transfer enhancement techniques to improve heat transfer equipment performance.  相似文献   

6.
This study presents, a numerical investigation of two‐dimensional turbulent nanofluids flow in different ribs tube configurations on heat transfer, friction, and thermal performance coefficients using ANSYS‐FLUENT software version‐16. Governing equations of mass, momentum, and energy have been solved by means of a finite volume method (FVM). Four types of nanoparticles namely; Al2O3, CuO, SiO2, and ZnO with volume fraction range (1%‐4%) and different size of nanoparticles (dp = 30 nm, 40 nm, 50 nm, and 60 nm) with various Reynolds number (10 000‐30 000) in a constant heat flux tube with rectangular, triangular, and trapezoidal ribs were conducted for simulation. The results exhibit that Nusselt number for all cases enhanced with Reynolds number and nanofluid volume fraction increases. Likewise, the results also reveal that SiO2 with volume fractions of 4% and diameters of nanoparticles of 30 nm in triangular ribs offered the highest Nusselt number at Reynolds number of Re = 30 000. In addition, the higher value of thermal performance factor was obtained at Reynolds number of Re = 10 000.  相似文献   

7.
A grooved surface feature is considered as a thermal enhancement for electronics cooling with single‐phase flow in minichannels. The influence of the groove structure and groove depth‐to‐width ratio on the flow and heat transfer in the minichannels has been numerically investigated. A two‐dimensional turbulent flow model was employed to optimize the groove structure in the minichannel. The effect of the groove geometric shape on the heat transfer performance in the minichannel was analyzed by evaluating the fluid thermophysical parameter and Nusselt number. It is found that the average Nusselt number ratio ($Nu_{avg}^{*}$ ) changes with an increase in groove depth‐to‐width ratios from d/W = 0.1 to d/W = 0.5. The groove heat transfer unit number (NTU) integrating heat transfer area (A) and heat transfer coefficient (h) were defined. The change of the NTU* for the minichannel with a triangular groove is different from that of the minichannel with a cylindrical groove while the groove depth‐to‐width ratio varies from d/W = 0.1 to d/W = 0.5. In addition, the flow pressure loss across the groove and the effects of the Reynolds number in the minichannels were also investigated. All the results should be taken into account for a better design of a minichannel with groove. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20413  相似文献   

8.
The work investigated the forced convection heat transfer of the heat sink situated in a rectangular channel by considering the bypass effect. The fluid medium was air. The relevant parameters were the Reynolds number (Re), the relative top by‐pass gap (C/H), and the relative side by‐pass gap (S/L). The size of the heat sink was 60 mm (L)×60 mm(W)×24 mm(H). Two heat sinks were employed as test specimens: (A) the 0.9‐porosity aluminum foam heat sink and (B) the 0.9‐porosity aluminum foam heat sink with a 20 mm diameter copper cylinder. The copper cylinder was used as a conductive pipe of heat sink. The average Nusselt number was examined under various forced convection conditions. Experimental results demonstrate that increasing by‐pass space decreased the Nusselt number. Besides, the average Nusselt number of mode B heat sink was higher than that of mode A heat sink by 30% for the case without by‐pass flow. The heat transfer enhancement by the copper cylinder would decline as the by‐pass space grew. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20247  相似文献   

9.
Experimental investigation of two‐phase laminar forced convection in a single porous tube heat exchanger is presented. The effect of Darcy, Reynolds, and Prandtl numbers on the performance of this heat exchanger during the condensation process of carbon dioxide at different test conditions were investigated. Gravel sand with different porosities is used as a porous medium. The flow in the porous medium is modeled using the Brinkman–Forchheimer‐extended Darcy model. Parametric studies are also conducted to evaluate the effects of porosity and Reynolds and Prandtl numbers on the heat transfer coefficient and the friction factor. A dimensionless performance parameter is developed in order to be used in evaluating the porous tube heat exchanger based on both the heat transfer enhancement and the associated pressure drop. The study covers a wide range of inlet pressure (Pin), mass flow rate (), porosity of gravel sand (ε), and Darcy number (Da) which ranged: 34.5 ≤ Pin ≤ 43 bars, 8 * 10? 5 ≤ ≤ 16 * 10? 5 kg/s, 34.9% ≤ ε ≤ 44.5%, 1.6 * 10? 6 ≤ Da ≤ 5 * 10? 6, respectively. The study predicted the combined effect of the Reynolds number, Darcy number, porosity, and Prandtl number on the heat transfer and pressure drop of carbon dioxide during the condensation process in a porous medium. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21117  相似文献   

10.
In this paper, combined convective heat transfer and nanofluids flow characteristics in a vertical rectangular duct are numerically investigated. This investigation covers Rayleigh numbers in the range of 2 × 106Ra ≤ 2 × 107 and Reynolds numbers in the range of 200 ≤ Re ≤ 1000. Pure water and five different types of nanofluids such as Ag, Au, CuO, diamond, and SiO2 with a volume fraction range of 0.5% ≤ φ ≤ 3% are used. The three‐dimensional steady, laminar flow, and heat transfer governing equations are solved using finite volume method (FVM). The effects of Rayleigh number, Reynolds number, nanofluids type, nanoparticle volume fraction of nano‐ fluids, and effect of radiation on the thermal and flow fields are examined. It is found that the heat transfer is enhanced using nanofluids by 47% when compared with water. The Nusselt number increases as the Reynolds number and Rayleigh number increase and aspect ratio decreases. A SiO2 nanofluid has the highest Nusselt number and highest wall shear stress while the Au nanofluid has the lowest Nusselt number and lowest wall shear stress. The results also revealed that the wall shear stress increases as Reynolds number increases, aspect ratio decreases, and nanoparticle volume fraction increases. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20354  相似文献   

11.
Predictions are reported for laminar mixed convection using various types of nanofluids over a horizontal backward‐facing step in a duct, in which the upstream wall and the step are considered adiabatic surfaces, while the downstream wall from the step is heated to a uniform temperature that is higher than the inlet fluid temperature. The straight wall that forms the other side of the duct is maintained at constant temperature equivalent to the inlet fluid temperature. Eight different types of nanoparticles, Au, Ag, Al2O3, Cu, CuO, diamond, SiO2, and TiO2, with 5% volume fraction are used. The conservation equations along with the boundary conditions are solved using the finite volume method. Results presented in this paper are for a step height of 4.9 mm and an expansion ratio of 1.942, while the total length in the downstream of the step is 0.5 m. The Reynolds number is in the range of 75 ≤ Re ≤ 225. The downstream wall was fixed at a uniform wall temperature in the range of 0 ≤ ΔT ≤ 30 °C which is higher than the inlet flow temperature. Results reveal that there is a primary recirculation region for all nanofluids behind the step. It is noticed that nanofluids without secondary recirculation region have a higher Nusselt number and it increases with Prandtl number decrement. On the other hand, nanofluids with secondary recirculation regions are found to have a lower Nusselt number. Diamond nanofluid has the highest Nusselt number in the primary recirculation region, while SiO2 nanofluid has the highest Nusselt number downstream of the primary recirculation region. The skin friction coefficient increases as the temperature difference increases and the Reynolds number decreases. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20344  相似文献   

12.
An experimental study on single‐phase laminar forced convection in a single porous tube heat exchanger is presented. Parametric studies are conducted for different inlet pressures, different mass flow rates, and different porosities to evaluate the effects of particle diameter and Reynolds number on the heat transfer and friction factor. The Nusselt number and friction factor are developed for efficient design of a porous heat exchanger based on the present configuration. Heat is transferred to the walls of the heat exchanger by natural convection mode. Gravel sand with different porosities is used as a porous medium during the tests. The flow of carbon dioxide as a working fluid in the porous medium is modeled using the Brinkman–Forchheimer‐extended Darcy model. A dimensionless performance parameter is developed in order to be used in evaluating the porous tube heat exchanger based on both the heat transfer enhancement and the associated pressure drop. The study covers a wide range of inlet pressures (Pi), mass flow rates ( ), porosity of gravel sand (ε), and particle diameters (dm) which ranged 34.5 ≤ Pi ≤ 43 bars, 8 ?? 10?5 ≤ ≤ 16 ?? 10?5 kg/s, 34.9% ≤ ε ≤ 44.5%, 1.25 ≤ dm ≤ 5.15 mm, respectively. This study revealed that a smaller particle diameter can be used to achieve higher heat transfer enhancement, but a larger particle diameter leads to a more efficient performance based on heat transfer enhancement. The average heat transfer coefficient of carbon dioxide decreases when the porosity increases. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21059  相似文献   

13.
Numerical investigation on forced (assisted) convection heat transfer in a two‐dimensional horizontal porous channel with an open cavity is studied in this article. A non‐uniform heat flux is considered to be located on the bottom surface of the cavity. The rest of the surfaces are taken to be perfectly insulated. The physical domain is filled with a water‐based nanofluid containing TiO2 nanoparticles. The fluid enters from the left and exits from the right with initial velocity Ui and temperature Ti. Governing equations are discretized using the penalty finite element method. The simulation is carried out for a wide range of Reynolds number Re (= 10–500) and Darcy number Da (= 10?5–∞). Results are presented in the form of streamlines, isothermal lines, local and average Nusselt numbers, average temperatures of the fluid, horizontal and vertical velocities at mid‐height of the channel and mean velocity fields for various Re and Da. The enhancement of heat transfer rate is caused by the increasing Re and falling Da. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21046  相似文献   

14.
This paper focuses on the application of fuzzy logic (FL) to predict the forced convection heat transfer from V‐shaped plate internal surfaces exposed to an air impingement slot jet. The aim of the present paper is to consider the effects of the angle of a V‐shaped plate (Φ), slot‐to‐plate spacing ratio (Z/W), and Reynolds number (Re) variation on average heat transfer from the V‐shaped plate internal surfaces. The data used for developing the FL structure was obtained experimentally by a Mach‐Zehnder interferometer. The proposed FL was developed using MATLAB functions. It was observed that the average Nusselt number will be decreased with an increase in jet spacing and be increased with an increase in Reynolds number and angle of V‐shaped plate. Moreover, it is also shown that fuzzy logic is a powerful technique to use for predicting heat transfer due to its low error rate. The average error of the fuzzy predictions compared with experimental data was found to be 0.33% for this study. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21009  相似文献   

15.
The paper presents the effect of a free-spacing snail entry together with conical-nozzle turbulators on turbulent heat transfer and friction characteristics in a uniform heat-flux tube. The insertions of the conical or converging nozzle (C-nozzle) with different pitch ratios (PR) in common with the free-space snail entry are examined in a Reynolds number range from 8000 to 18000. A substantial augmentation of heat transfer for using the C-nozzles and snail entrance is expected by a strong influence from nozzle-induced reverse/re-circulation motion and snail-produced vortex/swirl motion for high Reynolds number. The experimental result shows a considerable increase in friction factor and heat transfer over the plain tube under the same operation conditions. Over the range investigated, the Nusselt numbers for employing both the enhancement devices with PR = 2.0, 4.0 and 7.0 are found to be higher than that for the plain tube around 315%, 300% and 285% respectively. The results obtained are correlated in the form of Nusselt number as a function of Reynolds number, Prandtl number and pitch ratio. For performance comparison at equal pumping power, both the enhancement devices with the smallest pitch ratio perform the best, especially at low Reynolds number. The present results are also compared with correlations obtained from similar enhancement devices but without free-spacing entry.  相似文献   

16.
Experiments were conducted to investigate flow and heat transfer characteristics of water in rectangular microchannels. All tests were performed with deionized water. The flow rate, the pressures, and temperatures at the inlet and outlet were measured. The friction factor, heat flux, and Nusselt number were obtained. The friction factor in the microchannel is lower than the conventional value. That is only 20% to 30% of the convectional value. The critical Reynolds number below which the flow remains laminar in the microchannel is also lower than the conventional value. The Nusselt number in the microchannel is quite different from the conventional value. The Nusselt number for the microchannel is lower than the conventional value when the flow rate is small. As the flow rate through the microchannel is increased, the Nusselt number significantly increases and exceeds the value of Nusselt number for the fully developed flow in the conventional channel. The micro‐scale effect was exhibited. The Nusselt number is also affected by the heat flux. The Nusselt number remains the constant value when the flow rate is small. The Nusselt number increases with the increase in the heat flux when the flow rate is large. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(4): 197–207, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20206  相似文献   

17.
Experimental and computational investigations have studied the heat transfer, friction factor, and enhancement of heat transfer in a horizontal tube equipped with rectangular cut ring inserts and different diameter ratios (D/d) and pitch-to-tube diameter ratios (p/dt). In the present study, air having a Reynolds no. range of 6700–20,100 was used as a working fluid. Three diameter ratios (D/d) were considered experimentally and numerically as 1.2, 1.25, and 1.3, and the pitch-to-tube diameter ratio (p/dt) was (1, 0.625, and 0.5). Air was forced as working fluid through the tube and a uniform heat flux of 2000, 3500, and 5000 W/m2 was applied through the tube's exterior surface. On the basis of the turbulence model kɛ with various parameters, three-dimensional numerical simulations using the ANSYS Fluent software 17.2 were investigated. Under the same working conditions, the results manifested a higher heat transfer rate and friction factor as compared to the plain tube. The results evinced that the Nusselt number for a horizontal tube equipped with rectangular cut ring inserts having various pitch ratios and diameter ratios is discovered to be higher than that for the plain tube. With the increased ring spacing, the overall improvement in heat transfer occurred. And, with a rise in Re, the total enhancement ratio decreased. Consequently, the greatest overall improvement attained was 38% at Reynolds number (Re = 12,860) with the pitch ratio (p/dt = 1). The three diameter ratios (D/d) of 1.3, 1.25, and 1.2 gives in this study the average thermal performance factor in the value of 1.6, 1.5, and 1.4, respectively. Using the Nusselt number and friction factor, the results are correlated as a function of the Reynolds number, diameter ratio, and pitch ratio.  相似文献   

18.
Artificial roughness in the form of repeated transverse chamfered rib-groove roughness on one broad wall has been proposed as a convenient method for enhancement of thermal performance of solar air heater. An experimental investigation on heat and fluid flow characteristics of fully developed turbulent flow in a rectangular duct having repeated integral transverse chamfered rib-groove roughness on one broad wall has been carried out. The roughened wall is uniformly heated while the remaining three walls are insulated. These boundary conditions correspond closely to those found in solar air heaters. Six roughened plates have been tested placing a 60° V-groove at the centre line in between two consecutive chamfered ribs. The ribs' top have been chamfered having chamfer angles of 5°, 12°, 15°, 18°, 22° and 30°, while relative roughness pitch (P/e) and relative roughness height (e/Dh) of the ribs were kept constant having values of 10 and 0.03 respectively. The flow Reynolds number of the duct varied in the range of approximately 3000–21,000, most suitable for solar air heater. The effects of chamfer angle on Nusselt number and friction factor have been discussed and the results are compared with the square rib-grooved and smooth duct under similar flow conditions to investigate the enhancement in Nusselt number and friction factor. The conditions for the maximum enhancement of Nusselt number and friction factor have been determined. It has been found that the thermo-hydraulic performance of the solar air heater provided with such roughness is considerably enhanced.  相似文献   

19.
We have studied the enhancement of heat transfer by vortex generators. Experiments were performed on rectangular‐type vortex generators mounted on a parallel‐plate heater, and the heat transfer coefficient of the heater surface and pressure drop in the duct were measured. These measurements indicated that a rectangular vortex generator (called a double‐inclined winglet), with inclination angle of the vortex generator surface to the heater surface (β) at 60°, and the attack angle to the flow direction (γ) at 45°, maximizes the local Nusselt number of the heater surface. It was also found that a group of double‐inclined winglets has an optimal arrangement in a winglet array, longitudinal pitch and transverse pitch, that maximizes the ratio [Colburn's dimensionless heat transfer coefficient JH]/[friction factor f]. The results of numerical calculations showed that the double‐inclined winglet was superior to the conventional rectangular vortex generator in heat transfer. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(3): 253–267, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10089  相似文献   

20.
In the present research, the behavior of a Newtonian nanofluid (water–Al2O3) in a mixture phase model approach is numerically examined. The process of heating is done in two different ways. Deterioration was found in the mean Nusselt number of a nanofluid in the mixture‐phase model approach when compared to the mean Nusselt number of pure water. However, in the single‐phase model there was an increase in the Nusselt number when compared to the Nusselt number of pure water. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20383  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号