首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Recently, much work has focused on the efficient dispersion of carbon nanotubes (CNTs) throughout a polymer matrix for mechanical and/or electrical enhancement. However, there are still only few reports about gradient distribution of CNTs in polymer matrices. In the work reported here, CNTs embedded in a polymer film with a gradient distribution were successfully obtained and studied. RESULTS: For composite films with gradient distributions of CNTs, the upper surface behaves as an intrinsic insulator, while the lower one behaves as a semiconductor, or even as a conductor. It is also found that with an increase of 1 wt% CNTs, the resistance of the bottom surface decreases by 2–3 orders of magnitude, as compared with pure polyarylene ether nitrile; furthermore, when the proportion of CNTs increases up to 5 wt%, the resistance of the bottom surface shows only very little change. As a result, sufficient matrix conductivity of the bottom surface could be achieved at a lower filler concentration with CNTs in a gradient distribution. Meanwhile, the thermal stability, glass transition temperature and tensile properties of the matrix are maintained. CONCLUSION: There is considerable interest in such gradient composite films, which could be applied in the electrical engineering, electronics and aerospace fields, for their excellent mechanical properties, thermal stability and novel electrical properties. Copyright © 2008 Society of Chemical Industry  相似文献   

2.
In a simple device, two kinds of zeolites were successfully used as synergistic additive to promote formation of the multi‐walled carbon nanotubes (MWNTs) from polypropylene (PP) via combustion. More importantly, this kind of process may potentially act as a new approach for recycling plastic wastes, because it could effectively transfer polyolefin wastes into valuable carbon materials. Experimental results demonstrated that the higher quality of MWNTs can be obtained from the mixture (PP/H‐Beta/Ni2O3) than that from the mixture (PP/H‐ZSM‐5/Ni2O3). At the same time, the yield of MWNTs from PP/H‐ZSM‐5/Ni2O3 system is much lower than that from PP/H‐Beta/Ni2O3 under the same condition. The reason for the different effects of both types of zeolites on the morphology and the yield of the MWNTs was analyzed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Nanocomposites based on poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) and multi‐walled carbon nanotubes (MWNTs) were prepared by solution processing. Ultrasonic energy was used to uniformly disperse MWNTs in solutions and to incorporate them into composites. Microscopic observation reveals that polymer‐coated MWNTs dispersed homogenously in the PHBV matrix. The thermal properties and the crystallization behavior of the composites were characterized by thermogravimetric analysis, differential scanning calorimetry and wide‐angle X‐ray diffraction, the nucleant effect of MWNTs on the crystallization of PHBV was confirmed, and carbon nanotubes were found to enhanced the thermal stability of PHBV in nitrogen. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
Immobilization of ascorbate oxidase (AO) in poly(3,4‐ethylenedioxythiophene) (PEDOT)/multiwalled carbon nanotubes (MWCNTs) composite films was achieved by one‐step electrochemical polymerization. The PEDOT/MWCNTs/AO modified electrode was fabricated by the entrapment of enzyme in conducting matrices during electrochemical polymerization. The PEDOT/MWCNTs modified electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The experimental results showed that the composite films exhibited better mechanical integrity, electrochemical activity, higher electronic and ionic conductivity, and larger redox capacitance compared with pure PEDOT films, which would be beneficial to the fabrication of PEDOT/MWCNTs/AO electrochemical biosensors. The scanning electron microscopy studies revealed that MWCNTs served as backbone for 3,4‐ethylenedioxythiophene (EDOT) electropolymerization. Furthermore, the resulting enzyme electrode could be used to determine L ‐ascorbic acid successfully, which demonstrated the good bioelectrochemical catalytic activity of the immobilized AO. The results indicated that the PEDOT/MWCNTs composite are a good candidate material for the immobilization of AO in the fabrication of enzyme‐based biosensor. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
6.
To improve the mechanical and surface properties of poly(etherurethane) (PEU), multi‐walled carbon nanotubes (MWCNTs) were surface grafted by 3,3,4,4, 5,5,6,6,7,7,8,8,8‐tridecafluoro‐1‐octanol (TDFOL) (MWCNT‐TDFOL) and used as reinforcing agent for PEU. Fourier‐transform infrared spectroscopy revealed the successful grafting of MWCNTs. PEU filled with MWCNT‐TDFOL could be well dispersed in tetrahydrofuran solution, and tensile stress–strain results and dynamic mechanical analysis showed a remarkable increase in mechanical properties of PEU by adding a small amount of MWCNT‐TDFOL. Contact angle testing displayed a limited improvement (just 9°) in the hydrophobicity of PEU surface by solution blending with MWCNT‐TDFOL. However, a large improvement of surface hydrophobicity was observed by directly depositing MWCNT‐TDFOL powder on PEU surface, and the water contact angle was increased from 80° to 138°. Our work demonstrated a new way for the modification of carbon nanotubes and for the property improvement of PEU. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Multi‐walled carbon nanotube (MWNT)‐reinforced polyimide nanocomposites were synthesized by in situ polymerization of monomers in the presence of acylated MWNTs. The acyl groups associated with the MWNTs participated in the reaction through the formation of amide bonds. This process enabled uniform dispersion of MWNT bundles in the polymer matrix. The resultant MWNT–polyimide nanocomposite films were optically transparent with significant mechanical enhancement at a very low loading (0.5 wt%). Evidence has been obtained for improved interactions between the nanotubes and the matrix polymer. Copyright © 2006 Society of Chemical Industry  相似文献   

8.
Single‐walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) were oxidized by NaClO solutions and were employed as sorbents to study sorption characteristics of nickel(II) from aqueous solution. The surface properties of CNTs such as functional groups, total acidic sites and negatively charged carbons were greatly improved after oxidation, which made CNTs become more hydrophilic and resulted in sorption of more Ni2+. The amount of Ni2+ sorbed onto oxidized CNTs increased with a rise in agitation speed, initial Ni2+ concentration and solution pH in the range 1–8, but decreased with a rise in CNT mass and solution ionic strength. The sorption mechanisms are complicated and appear attributable to electrostatic forces and chemical interactions between the Ni2+ and the surface functional groups of the CNTs. The oxidized SWCNTs and MWCNTs have shorter equilibrium time and better Ni2+ sorption performance than the oxidized granular activated carbon, suggesting that both NaClO oxidized CNTs are efficient Ni2+ sorbents and that they possess good potential applications in water treatment. Copyright © 2006 Society of Chemical Industry  相似文献   

9.
Single‐walled carbon nanotubes (SWCNTs) dispersed in N‐methylpyrrolidone (NMP) were functionalized by addition of polystyryl radicals from 2,2,6,6‐tetramethyl‐1‐piperidinyloxy‐ended polystyrene (SWCNT‐g‐PS). The amount of polystyrene grafted to the nanotubes was in the range 20‐25 wt% irrespective of polystyrene number‐average molecular weight ranging from 2270 to 49 500 g mol?1. In Raman spectra the ratios of D‐band to G‐band intensity were similar for all of the polystyrene‐grafted samples and for the starting SWCNTs. Numerous near‐infrared electronic transitions of the SWCNTs were retained after polymer grafting. Transmission electron microscopy images showed bundles of SWCNT‐g‐PS of various diameters with some of the polystyrene clumped on the bundle surfaces. Composites of SWCNT‐g‐PS in a commercial‐grade polystyrene were prepared by precipitation of mixtures of the components from NMP into water, i.e. the coagulation method of preparation. Electrical conductivities of the composites were about 10?15 S cm?1 and showed no percolation threshold with increasing SWCNT content. The glass transition temperature (Tg) of the composites increased at low filler loadings and remained constant with further nanotube addition irrespective of the length and number of grafted polystyrene chains. The change of heat capacity (ΔCp) at Tg decreased with increasing amount of SWCNT‐g‐PS of 2850 g mol?1, but ΔCp changed very little with the amount of SWCNT‐g‐PS of higher molecular weight. The expected monotonic decrease in ΔCp coupled with the plateau behavior of Tg suggests there is a limit to the amount that Tg of the matrix polymer can increase with increasing amount of nanotube filler. Copyright © 2012 Society of Chemical Industry  相似文献   

10.
This study described the synthesis of hydrochloric acid (HCl)‐doped poly (N‐methylaniline) (PNMA) with carboxylic groups containing multi‐walled carbon nanotubes (c‐MWNTs) via in situ polymerization. Based on the π–π electron interaction between c‐MWNTs and the N‐methylaniline monomer and the hydrogen bond interaction between the carboxyl groups of c‐MWNTs and imine groups of N‐methylaniline monomers, N‐methylaniline molecules were adsorbed on the surface of c‐MWNTs and polymerized to form PNMA/c‐MWNT composites. Scanning electron microscopy images showed that both the thinner fibrous phase and the larger block phase could be observed. The individual fibrous phases had diameters from several tens to hundreds of nanometers, depending on the PNMA content. Transmission electron microscopy proved that PNMA/c‐MWNTs composite fibrous phases were core (c‐MWNT)‐shell (PNMA) tubular structures. The structure of PNMA/c‐MWNT composites was characterized by FTIR, UV–vis spectra, and X‐ray diffraction patterns. The electrical conductivities of PNMA/c‐MWNT composites were much higher than that of PNMA without c‐MWNTs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2356–2361, 2006  相似文献   

11.
The polypropylene‐grafted multiwalled carbon nanotubes (PP‐MWCNTs) were produced from the reaction of PP containing the hydroxyl groups and MWCNTs having 2‐bromoisobutyryl groups. The PP‐MWCNTs had a significantly rougher surface than the original MWCNTs. PP‐MWCNTs had PP layers of thickness 10–15 nm on the outer walls of the MWCNTs. PP/PP‐MWCNT composites and PP/MWCNT composites were prepared by solution mixing in o‐xylene. Unlike PP/MWCNT composites, PP‐MWCNTs were homogeneously dispersed in the PP matrix. As a consequence, the thermal stability and conductivity of PP/PP‐MWCNT composites were dramatically improved even if only 1 wt % of PP‐MWNTs was added to the PP matrix. The good miscibility of PP and PP‐MWCNTs plays a critical role in the formation of the homogeneous composites and leads the high thermal stability and conductivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Incorporation of carbon nanotubes (CNTs) in conducting polymer can lead to new composites with enhanced electrical and mechanical properties. However, the development of such composites has been hampered by the inability to disperse CNTs in polymer matrix due to the lack of chemical compatibility between polymers and CNTs. Covalent sidewall functionalization of carbon nanotube provides a feasible route to incorporate carbon nanotube in polymer. In this work, 4‐aminobenzene groups were grafted onto the surface of multi‐walled carbon nanotube (MWNT) via C? C covalent bond. Polyaniline (PANI)/MWNT composites were fabricated by electrochemical polymerization of aniline containing well‐dissolved functionalized MWNTs. The obtained composites can be used as catalyst supports for electrooxidation of formic acid. Cyclic voltammogram results show that platinum particles deposited in PANI/MWNT composite films exhibit higher electrocatalytic activity and better long‐term stability towards formic acid oxidation than that deposited in pure PANI films. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
A multi‐walled carbon nanotube (MWCNT)/cellulose composite was synthesized to improve the mechanical strength of regenerated cellulose film. N,N‐carbonyldiimidazole was mixed with functionalized MWCNTs and sonicated at 60 °C for 12 h. The resulting MWCNT‐imidazolide was mixed with cellulose solution, and reacted at various temperatures for various times. The occurrence of covalent bonds between MWCNTs and cellulose was investigated using Fourier transform infrared spectroscopy and Raman spectroscopy. According to mechanical tensile tests, Young's modulus of the MWCNT/cellulose composite was found to be 11.2 GPa, an increase of approximately 110% with respect to regenerated cellulose film. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
In this work, we analyzed tensile properties of polypropylene‐multiwalled carbon nonotubes composite fibers. The multiwalled carbon nanotubes (MWCNTS) were used in different contents of 0, 1, 2, 3, 4, and 5 wt %. Dispersing agents were used to disperse MWCNTs in polypropylene matrix. After the dispersing agent was removed, the mixture was melt mixed. The fibers were spun by a home‐made melt spinning equipment and stretching was done at a draw ratio of 7.5. By using 1–5 wt % of MWCNTs, the modulus of composite fibers increased by 69–84% and tensile strength increased about 39% when compared with the virgin polypropylene fibers. In addition, the MWCNTs dispersion in the matrix was monitored by scanning electron microscopy and transmission electron microscopy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Pyrene‐capped polystyrene (PyPS) with various molecular weights (M?n) was synthesized through the anionic polymerization method and characterized using UV, Fourier transform infrared and NMR spectroscopy and gel permeation chromatography. The polymers were then used for non‐covalent functionalization of pristine single‐walled carbon nanotubes (SWNTs). The functionalization efficiency was assessed by measuring the SWNT dispersibility in chloroform. In the presence of PyPS, the dispersibility can be as high as 372.5 mg L?1, and the dispersions containing more than 1.25 mg mL?1 of PyPS are very stable with no solid deposits observed after being centrifuged at 5000 rpm for 15 min. Once the PyPS concentration is converted to the molar concentration of the pyrene unit and the dispersibility redefined as nanotube content per molar pyrene unit, the renewed dispersibility is found to be independent of M?n of PyPS within the detected M?n range. For a certain PyPS polymer, however, both nanotube dispersibility and dispersion stability are strongly dependent on the PyPS concentration. These results suggest that PyPS may be used as an excellent dispersant for subsequent preparation of polystyrene/SWNT composites. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
Suspensions were prepared by homogeneously mixing titanium dioxide particles in (hydroxypropyl) methylcellulose (HPMC) aqueous solutions. Thin plate‐shaped particles were made from balloon materials crushed to pieces. The other three types of particles used as references were plate‐shaped samples surface‐modified with alumina, and two types of spherical particles of anatase and rutile forms. Plateau adsorption amounts of HPMC onto particles depended on their surface properties. Comparisons of rheological behaviour were carried out among the residual three samples except for the sample having the rutile form. Within the concentration range used, the viscosity values of suspensions were rather lower than that of HPMC aqueous solutions. The reason for such low values was attributed to the decrease of entanglements in the semi‐dilute regime and also to steric stabilization resulting from the formation of the HPMC adsorbed layer. The change of structural viscosity and its recovery were evaluated by observation of the decrease of viscosity and its recovery as an indicator. It was confirmed that suspensions of thin plate‐shaped particles had superior structural recovery performance. © 2002 Society of Chemical Industry  相似文献   

17.
Functionalized multi‐wall carbon nanotubes (MWCNTs) treated by mixed acids have been used to develop a capacitive humidity sensor based on MWCNTs/silicone rubber (SR) composite film. The MWCNTs/SR composites were prepared through conventional solution processed method. The micrographs of MWCNTs/SR composites were observed by transmission electron microscopy (TEM) and scanning electron microscope. The FT‐IR spectra demonstrated the successfully grafting of ? OH groups on the treated MWCNTs. The sensing properties of the composite at different relative humidity (RH) and frequency were characterized and linear sensing responses of the MWCNTs/SR composites to RH were observed. The treated MWCNTs/SR composite film (Tr‐film) had higher sensitivity than that of the untreated MWCNTs/SR composite film (Un‐film). Experimental data indicate that the Tr‐film exhibits an excellent long‐term stability, small hysteresis, and fine reproducibility. The response and recovery time of the Tr‐film were 30 and 27 s, respectively. Thereby, such Tr‐film had potential applications as humidity sensors. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40342.  相似文献   

18.
Nanocomposites of blends of polymethylmethacrylate (PMMA) and poly(styrene‐co‐acrylonitrile) (SAN) with multi‐walled carbon nanotubes (MWCNTs) were prepared by melt mixing in a twin‐screw extruder. The dispersion state of MWCNTs in the matrix polymers was investigated using transmission electron microscopy. Interestingly enough, in most of the nanocomposites, the MWCNTs were observed to be mainly located at SAN domains, regardless of the SAN compositions in the PMMA/SAN blend and of the processing method. One possible reason for this morphology may be the π–π interactions between MWCNTs and the phenyl ring of SAN. The shift in G‐band peak observed in the Raman spectroscopy may be the indirect evidence proving these interactions. The percolation threshold for electrical conductivity of PMMA/SAN/MWCNT nanocomposites was observed to be around 1.5 wt %. Nanocomposites with PMMA‐rich composition showed higher electrical conductivity than SAN‐rich nanocomposites at a fixed MWCNT loading. The dielectric constant measurement also showed composition‐dependent behavior. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
One of the major problems of nanofiber scaffold or other devices like cardiovascular or blood‐contacting medical devices is their weak mechanical properties and the lack of hemocompatibility of their surfaces. In this study, halloysite nanotubes (HNTs) and carbon nanotubes (CNTs) were incorporated within poly(lactic‐co‐glycolic acid) (PLGA) nanofibers and the mechanical property and hemocompatibility of both types of composite nanofibers with different doping levels were thoroughly investigated. The morphology and internal distribution of the doped nanotubes within the nanofibers were characterized using scanning electron microscopy and transmission electron microscopy. Mechanical properties of the electrospun nanofibers were tested using a material testing machine. The hemocompatibility of the composite nanofibers was examined through hemolytic and anticoagulant assay, respectively. We show that the doped HNTs or CNTs are distributed in the nanofibers with a coaxial manner and the incorporation of HNTs or CNTs does not significantly change the morphology of the PLGA nanofibers. Importantly, the incorporation of HNTs or CNTs within PLGA nanofibers significantly improves the mechanical property of PLGA nanofibers, and PLGA nanofibers with or without doping of the HNTs and CNTs display good anticoagulant property and negligible hemolytic effect to human red blood cells. With the enhanced mechanical property, great hemocompatibility, and previously demonstrated biocompatibility of both HNTs‐ and CNTs‐doped composite PLGA nanofibers, these composite nanofibers may be used as therapeutic artificial tissue/organ substitutes for tissue engineering applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
重金属污染是当今工业发展所面临的一个重要环境问题,传统处理含铬废水的方法具有工艺简单、操作方便等优点,但存在二次污染、处理成本高等问题。寻找成本低、去除效率高的重金属废水处理方法是当下研究的一个重要方向。本工作介绍了生物质吸附法对含铬废水的处理研究,简述了生物质材料在金属吸附回收领域的优势,分析了当前生物质吸附材料的研究内容和发展现状,归纳了目前常用的物理、化学改性方法,并详细介绍了改性生物质材料对Cr(VI)的吸附效果,然后根据吸附剂表面活性基团与吸附质之间相互作用的类型,分析总结了生物质吸附材料对Cr(VI)的四种吸附机理以及在吸附过程中氨基、羟基、硫醇等活性基团作为电子供体对Cr(VI)的还原机理。最后,从研究与应用的角度,对生物质吸附材料吸附还原Cr(VI)的未来研究方向做出展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号