首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to develop an aqueous two‐phase system (ATPS) for cephalexin synthesis with extractive bioconversion, the partitioning behaviour of cephalexin and 7‐aminodeacetoxicephalosporanic acid (7‐ADCA) in poly(ethylene glycol) (PEG)/salt ATPS were examined. Parameters such as PEG size, salt type and tie line length were investigated to find a primary extraction system. In PEG400/ammonium sulfate and PEG400/magnesium sulfate systems, the partition coefficient of cephalexin (KC) was larger than 1 while that of 7‐ADCA (KA) deviated about 1.5. Addition of neutral salts, surfactants and water‐miscible solvents were also investigated in the primary ATPS in order to improve the separation efficiency. KC greatly increased when neutral salts and surfactants were added to the PEG400/ammonium sulfate primary systems whereas KA was only slightly higher than that of the additive‐free ATPS. In an improved ATPS for extractive bioconversion, consisting of PEG400 (20% w/w), ammonium sulfate (17.5% w/w), methanol (5% w/w) and NaCl (3% w/w), a KC value of up to 15.2 was achieved; KA was 1.8; KP (partition coefficient of phenylglycine methyl ester) was 1.2 and the recovery yield of cephalexin was 94.2%. The results obtained from the extractive bioconversion of cephalexin in the improved ATPS showed that it is feasible to perform such an enzymatic process in an ATPS and the system offers the potential as a model for enzymatic synthesis of some water soluble products. © 2001 Society of Chemical Industry  相似文献   

2.
The potential use of aqueous two‐phase systems (ATPS) to establish a viable protocol for the in situ recovery of cyanobacterial products was evaluated. The evaluation of system parameters such as poly (ethylene glycol) (PEG) molecular mass, concentration of PEG and salt was carried out to determine the conditions under which Synechocystis sp. PCC 6803 cell and cyanobacterial products, i.e., β‐carotene and lutein, become concentrated in opposite phases. PEG‐phosphate ATPS proved to be unsuitable for the recovery of cyanobacterial products due to the negative effect of the salt upon the cell growth. The use of ATPS PEG‐dextran (6.6 % w/w PEG 3350, 8.4 % w/w dextran 66900, TLL 17.3 % w/w, VR 1.0, pH 7) and (4.22 % w/w PEG 8000, 9.77 % w/w dextran 66900, TLL 18 % w/w, VR 1.0, pH 7) resulted in the growth of cyanobacteria (Synechocystis sp. PCC 6803) and the concentration of lutein in opposite phases. However, β‐carotene was seen to concentrate in the top phase together with the biomass. The results reported here demonstrate the potential application of ATPS to establish the conditions for an extractive fermentation prototype process for the recovery of cyanobacterial products.  相似文献   

3.
In this study the use of an aqueous two‐phase system (ATPS) following the direct chemical extraction of a recombinant viral coat protein, from the cytoplasm of Escherichia coli, is evaluated. The driving force is the need to establish an economically‐viable process for the manufacture of a vaccine against human papilloma infection. The partition behaviour of recombinant L1 protein, the major structural protein of the virus, and DNA was investigated in a polyethylene glycol (PEG)–phosphate system. An evaluation of system parameters including PEG molecular mass and the concentrations of PEG and phosphate was conducted, to estimate conditions under which the L1 protein and DNA partition to opposite phases. ATPS extraction comprising a volume ratio of 1.00, PEG 1000 (18.0%(w/w)) and phosphate (15.0%(w/w)) provided the conditions for accumulation of DNA into the bottom phase and concentration of L1 protein into the opposite phase (ie partition coefficient of DNA; ln KDNA < 0.0 and partition coefficient of L1; ln KL1 > 2.5). The findings reported here demonstrate the potential of ATPS to recover recombinant protein released from E coli by direct chemical extraction. © 2002 Society of Chemical Industry  相似文献   

4.
A novel process for the recovery of c‐phycocyanin from Spirulina maxima exploiting aqueous two‐phase systems (ATPS), ultrafiltration and precipitation was developed in order to reduce the number of unit operations and benefit from an increased yield of the protein product. The evaluation of system parameters such as PEG molecular mass, concentration of PEG as well as salt, system pH and volume ratio was carried out to determine under which conditions the c‐phycocyanin and contaminants concentrate to opposite phases. PEG1450–phosphate ATPS proved to be suitable for the recovery of c‐phycocyanin because the target protein concentrated in the top phase whilst the cell debris concentrated in the bottom phase. A two‐stage ATPS process with a phase volume ratio (Vr) equal to 0.3, PEG1450 7% (w/w), phosphate 20% (w/w) and system pH of 6.5 allowed c‐phycocyanin recovery with a purity of 2.4 (estimated as the relationship of the 620 nm to 280 nm absorbances). The use of ultrafiltration (with a 30 kDa membrane cut‐off) and precipitation (with ammonium sulfate) resulted in a recovery process that produced a protein purity of 3.8 ± 0.1 and an overall product yield of 29.5% (w/w). The results reported here demonstrated the practical implementation of ATPS for the design of a prototype recovery process as a first step for the commercial purification of c‐phycocyanin produced by Spirulina maxima. © 2001 Society of Chemical Industry  相似文献   

5.
A simplified process for the primary recovery and purification of B‐phycoerythrin (BPE) from Porphyridium cruentum exploiting aqueous two‐phase systems (ATPS) and isoelectric precipitation was developed in order to reduce the number of unit operations and benefit from increased purity and yield of the protein product. Evaluation of the partitioning behaviour of BPE in polyethylene glycol (PEG)/sulphate, PEG/dextran and PEG/phosphate ATPS was carried out to determine under what conditions the BPE and contaminants concentrated into opposite phases. An additional stage of isoelectric precipitation at pH 4.0 after cell disruption resulted in an increase in purity of the target protein from the BPE crude extract and enhanced the performance of the subsequent ATPS. PEG1000/phosphate ATPS proved to be suitable after isoelectric precipitation for the recovery of highly purified (defined as absorbance ratio A545 nm/A280 nm > 4.0) BPE with a potential commercial value as high as US$ 50/mg. An ATPS extraction stage comprising 29.5% (w/w) PEG1000, 9.0% (w/w) phosphate, a volume ratio (Vr) equal to 1.0, a system pH of 7.0 and loaded with 40% (w/w) of the BPE extract generated by precipitation allowed BPE recovery with a purity of 4.1±0.2 and an overall product yield of 72% (w/w). The purity of BPE from the crude extract increased 5.9‐fold after isoelectric precipitation and ATPS. The results reported herein demonstrate the benefits of the practical application of isoelectric precipitation together with ATPS for the recovery and purification of BPE produced by P. cruentum as a first step in the development of a commercial purification process. Copyright © 2006 Society of Chemical Industry  相似文献   

6.
BACKGROUND: Aqueous two‐phase extraction is a versatile method for separating biological particles and macromolecules. In the present wok, the feasibility of using PEG 4000/potassium citrate aqueous two‐phase system (ATPS) for recovering and purifying lysozyme was investigated. Response surface methodology was used to determine an optimized ATPS for purification of lysozyme from crude hen egg white. RESULTS: Mathematical models concerning the purification of lysozyme from chicken egg white in polyethylene glycol 4000 (PEG 4000)/potassium citrate ATPS are established using response surface methodology. Screening experiments using fractional factorial designs show that the pH of the system significantly affects the recovery and purification of lysozyme. An optimized ATPS was proved to be at pH 5.5 and 30 °C and contained 18% (w/w) PEG, 16% (w/w) potassium citrate, 3.75% (w/w) potassium chloride (KCl). Under those conditions, the specific activity, purification factor and activity yield for lysozyme were 31100 U mg?1, 21.11 and 103%, respectively. CONCLUSION: The PEG 4000/potassium citrate ATPS has the potential to be applied to establish bioprocesses for the primary recovery and partial purification of lysozyme. © 2012 Society of Chemical Industry  相似文献   

7.
A new aqueous two‐phase system (ATPS) based on a degradable polymer called poly(ethylene oxide sulfide) with a molecular weight of 33 000 g mol?1 (identified as PEOS‐12) and potassium phosphate was exploited for the potential recovery of proteins. An initial characterisation of the ATPS was achieved by the construction of a phase diagram for the PEOS‐12/phosphate system. The protein partitioning behaviour of lysozyme and bovine serum albumin (BSA), selected as single model proteins, and B‐phycoerythrin (BPE) produced by Porphyridium cruentum in the new ATPS under increasing tie line length (TLL) conditions at constant phase volume ratio (Vr) and system pH was investigated. Both single proteins partitioned in the new ATPS, initially exhibiting bottom phase preference; however, lysozyme changed phase preference when TLL was increased. Fractionation of a complex model (production of BPE by P. cruentum) using PEOS‐12/phosphate ATPS was performed to evaluate the potential protein recovery from fermentation broth or cell homogenate. The proposed new ATPS proved to be suitable for the potential recovery of BPE from crude extract of P. cruentum. In general, a system comprising Vr = 1.0, 18% (w/w) PEOS‐12, 8% (w/w) phosphate and 30% (w/w) TLL at pH 7.0 provided conditions to concentrate BPE into the bottom phase (i.e. partitioning behaviour of BPE; lnKBPE = ?1.8) with a protein recovery of 84%. The findings reported here demonstrate the potential application of the new ATPS for the recovery of proteins from complex biological suspensions. Copyright © 2006 Society of Chemical Industry  相似文献   

8.
For more than 30 years, PEGylation has been used to improve the physicochemical properties of several proteins and therapeutic drugs having a major impact in the biopharmaceutical industry. The purification of PEGylated proteins usually involves two basic challenges: (1) the separation of PEG‐proteins from other reaction products; and (2) the sub‐fractionation of PEG‐proteins on the basis of their degree of PEGylation and positional isomerism. Currently, most PEGylated protein purification processes are based on chromatographic techniques, especially size exclusion chromatography (SEC) and ion exchange chromatography (IEX). Nonetheless, other less frequently used strategies based on non‐chromatographic techniques such as ultrafiltration, electrophoresis, capillary electrophoresis, and aqueous two‐phase systems have been developed in order to fractionate and analyze PEGylated derivates. This review presents current advances in some of the most widely used non‐chromatographic strategies for the fractionation and analysis of PEG‐protein conjugates. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
Gallium trichloride (GaCl3) catalyzes the ethynylation reaction of a 1,4‐enyne with chlorosilylacetylene at the propargyl position giving a triethynylvinylmethane. This catalytic method can be applied to the exhaustive α‐ethynylation of 1‐silylacetylenes possessing less acidic propargyl protons, and mono‐, di‐, and triethynylated products are obtained depending on the structure of the starting materials.  相似文献   

10.
A new enantioselective α‐benzylation and α‐allylation of α‐tert‐butoxycarbonyllactones was devloped. α‐Benzylation and α‐allylation of α‐tert‐butoxycarbonylbutyrolactone and α‐tert‐butoxycarbonylvalerolactone under phase‐transfer catalytic conditions (50% cesium hydroxide, toluene, −60 °C) in the presence of (S,S)‐3,4,5‐trifluorophenyl‐NAS bromide (1 mol%) afforded the corresponding α‐substituted α‐tert‐butoxycarbonyllactones in very high chemical yields (up to 99%) and optical yields (up to 99% ee). The synthetic potential of this method has been successfully demonstrated by the asymmetric synthesis of unnatural α‐quaternary homoserines, 3‐alkyl‐3‐carboxypyrrolidine and 3‐alkyl‐3‐carboxypiperidine.  相似文献   

11.
A two‐stage extraction process for the recovery of intracellular proteins from brewers' yeast was selected as a practical model system to study the implementation of polyethylene glycol (PEG)–phosphate aqueous two‐phase systems (ATPS). Disrupted all suspensions generated by homogenisation and bead milling were used to study the impact of cell debris upon the partition behaviour of the intracellular products (bulk protein, fumarase and pyruvate kinase). Regardless of their origin debris particles did not significantly influence the partition behaviour of the intracellular products in selected ATPS distant from the binodal and at volume ratios greater than one. Recycling of used PEG into the initial extraction stage did not significantly influence the protein partition behaviour in batch ATPS. In the polymer recycling studies in continuous ATPS using spray columns, the addition of fresh materials to make up the deficits of phase‐forming chemicals compensate any negative effect of the continuous recycling of the top PEG‐rich phase. The findings of these studies raise the potential application of ATPS processes for protein recovery from complex biological systems. © 2000 Society of Chemical Industry  相似文献   

12.
《分离科学与技术》2012,47(4):591-598
A aqueous two phase system (ATPS) comprising of PEG (Average mol. Wt: 4000, 6000, 8000) – lithium citrate salt-water systems were studied. The basic studies like binodal curve data generation and equilibrium studies were carried out. Furthermore, the binodal model and Othmer-Tobias and Bancroft models for phase equilibria were used for reproducing the experimental binodal data and phase equilibrium composition data, respectively. Good agreement was obtained with the experimental binodal data and tie line data with the models. The effective excluded volume values were obtained from the binodal model for the present ATPS. The tie line length was determined through the phase equilibrium composition data. This system was used to partition crude proteins of the fish industry effluent. The effects of PEG and salt weight fraction in terms of tie line length and effective excluded volume on partitioning coefficient of crude protein were studied in detail. From the results it was observed that, the crude proteins present in the fish effluent were partitioned in the PEG rich phase and the maximum partition coefficient of 7.82 was obtained. The results are discussed in the context of practical potential of this citrate based ATPS in separating crude proteins from fish industry effluent.  相似文献   

13.
BACKGROUND: The potential use of plants as production systems to establish bioprocesses has been established over the past decade. However, the lack of efficient initial concentration and separation procedures affect the generic acceptance of plants as economically viable systems. In this context the use of aqueous two‐phase systems (ATPS) can provide strategies to facilitate the adoption of plants as a base for bioprocesses. Among the crops, soybeans (Glycine max) represent an attractive alternative since potentially they can produce high levels of recombinant protein. In this paper the processing of fractionated soybean extracts using ATPS is evaluated as a first step to recover recombinant proteins expressed in plants, using β‐glucuronidase (GUS; E.C. 3.2.1.31) as a model protein. RESULTS: The evaluation of the effect of system parameters provided the conditions under which the contaminant proteins from fractionated soybean extracts and GUS concentrated in opposite phases. A PEG 600/phosphate system comprising 14.5% (w/w) polyethylene‐glycol (PEG), 17.5% (w/w) phosphate, a volume ratio (Vr) equal to 1.0, and a system pH of 7.0 resulted in the potential 83% recovery of GUS from the complex mixture and an increase in purity of 4.5‐fold after ATPS. CONCLUSIONS: The findings reported here demonstrate the potential of ATPS to process fractionated soybean extract as a first step to isolate and purify a recombinant protein expressed in soybeans. The proposed approach can simplify the way in which recombinant proteins expressed in plants can be recovered. Copyright © 2007 Society of Chemical Industry  相似文献   

14.
Developing a novel Ionic‐liquid (IL) based aqueous two‐phase system (ATPS) with polyethylene glycol (PEG) as adjuvant for the separation of biomolecules is studied. This original work involves addition of various concentration of PEG (2000, 4000, and 6000 gr/mol) to 1‐butyl‐3‐methylimidazolium acetate+ potassium hydrogen phosphate ATPS to investigate their subsequent effect on phase diagrams and partitioning coefficient of α‐amylase. In another innovative aspect of this work, response surface methodology (RSM) based on three‐variable central composite design was employed to understand the effect of phase forming components on extraction studies of α‐amylase. The addition of small amount of PEG improved the partitioning coefficient of biomolecule. The effective excluded volume theory was applied to correlate the salting‐out ability. As a result, it can be stated that the proposed system can effectively be used in separation and purification studies instead of task specific ILs. © 2015 American Institute of Chemical Engineers AIChE J, 62: 264–274, 2016  相似文献   

15.
A new enantioselective α‐alkylation of α‐tert‐butoxycarbonyllactams for the construction of β‐quaternary chiral pyrrolidine and piperidine core systems is reported. α‐Alkylations of N‐methyl‐α‐tert‐butoxycarbonylbutyrolactam and N‐diphenylmethyl‐α‐tert‐butoxycarbonylvalerolactam under phase‐transfer catalytic conditions (solid potassium hydroxide, toluene, −40 °C) in the presence of (S,S)‐3,4,5‐trifluorophenyl‐3,3′,5,5′‐tetrahydro‐2,6‐bis(3,4,5‐trifluorophenyl)‐4,4′‐spirobi[4H‐dinaphth[2,1‐c:1′,2′‐e]azepinium] bromide [(S,S)‐NAS Br] (5 mol%) afforded the corresponding α‐alkyl‐α‐tert‐butoxycarbonyllactams in very high chemical (up to 99%) and optical yields (up to 98% ee). Our new catalytic systems provide attractive synthetic methods for pyrrolidine‐ and piperidine‐based alkaloids and chiral intermediates with β‐quaternary carbon centers.  相似文献   

16.
Poly(ethylene glycol)‐block‐poly(N‐isopropylacrylamide) (PEG‐b‐PNIPAM) block copolymers were synthesized by atom transfer radical polymerization, and the α‐cyclodextrin (α‐CD) induced self‐assembly characteristics of the system were elucidated. Below the lower critical solution temperature (LCST) of PNIPAM, CD threaded onto the PEG segments and induced micellization to form rod‐shaped nanostructures comprising of a PEG/α‐CD condensed phase and a PNIPAM shell. Increasing the temperature of system above the LCST caused the PNIPAM segments to collapse, which resulted in the dethreading of the CD. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
BACKGROUND: Although submerged fermentation (SmF) is the conventional method in industry, use of low‐cost agro‐residues for α‐amylase production in SmF has not been well established. Here we optimized agro‐residue‐based medium and culture conditions for α‐amylase production in SmF using a hyper‐producing Bacillus subtilis KCC103. RESULTS: B. subtilis KCC103 produced α‐amylase in SmF by utilizing agro‐residues. Wheat bran (WB) and sunflower oil cake (SFOC) were selected as the best substrates using shake flasks. Medium containing WB (carbohydrate rich) and SFOC (rich in protein and free amino acids) at 1:1 (w/w) ratio produced high levels (90 IU mL−1) of α‐amylase at 30–36 h in a shake flask. The α‐amylase yield was 14‐fold enhanced (1258 IU mL−1) by optimizing process parameters and medium composition following response surface methodology in a bioreactor. The optimal conditions were: WB 1.27%, SFOC 1.42%, pH 7, 37 °C and 10–12 h. Both in shake flask and bioreactor α‐amylase synthesis was not repressed by the release of simple sugars into the medium. CONCLUSION: KCC103 with catabolite derepression and hyperproducing ability is useful for economic α‐amylase production using low‐cost agro‐residual substrates in conventional SmF. Since the production time (10–12 h) is much shorter than other strains this would improve productivity and further reduce the cost of α‐amylase production. Copyright © 2008 Society of Chemical Industry  相似文献   

18.
As the second part of a series of studies on the synthesis of n‐butyl phenyl ether (ROPh) by tri‐liquid‐phase catalysis, this work examines the factors affecting the reaction between n‐butyl bromide (RBr, organic substrate) and sodium phenolate (NaOPh, aqueous nucleophile) with poly(ethylene glycol)‐600 (PEG‐600) as a phase‐transfer catalyst. The reaction is performed in a batch reactor at 45–85 °C for 2 h while the agitation speed is fixed at 1000 rpm. Experimental results indicate that the individual mole fractions of NaOPh and PEG‐600 slightly affect the reaction, while the total amount of these components exerts significant influence. When the mole fraction of PEG‐600 is 0.5, the reaction rate and the conversion of RBr are the highest. No byproducts are formed in the course of the reaction. The system using a non‐polar organic solvent might obtain a higher conversion compared with a weakly polar one owing to a higher concentration of PEG‐600 in the third liquid phase. Furthermore, adding NaOH facilitates the reaction to obtain a higher reaction rate than adding other kinds of salt because the addition of a base results in the formation of a third liquid phase. The catalytic ability of PEG with average molecular weight of 600 gmol?1 is far higher than that with average molecular weight of 200, 400 and 1000 because PEG‐600 possesses an appropriate chain length which can tightly associate with Na+ to form the complex of PEG‐600‐Na+OPh? for reacting with RBr. In addition, this nucleophilic substitution reaction is found to be pseudo‐first‐order with respect to RBr. © 2001 Society of Chemical Industry  相似文献   

19.
The phase‐transfer‐catalyzed alkylation of α‐alkynylcrotonates was developed as a means to provide 1,4‐enynes deconjugated by an all‐carbon quaternary center. Extension to the asymmetric version using the chiral phase‐transfer catalyst (S)‐ 3 provided the alkylated compounds with up to 87% ee.  相似文献   

20.
The operational conditions for an aqueous two‐phase system (ATPS) for β‐galactosidase purification were optimized and applied to the design of a purification strategy as an alternative to the primary purification steps. The ATPS proved to be suitable for the recovery and primary enzyme purification. The purification process design developed by ATPS, diafiltration, ion exchange, and diafiltration/ultrafiltration was successful, yielding a more than tenfold purification. The purification strategy design resulted in a powerful integrated purification and recovery process, an evidence of the potential for a scale‐up of the β‐galactosidase purification process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号